
Radar Toolbox
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Radar Toolbox User's Guide
© COPYRIGHT 2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2021 Online only New for Version 1.0 (R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Featured Examples
1

Radar Architecture: Part 1 – System components and requirements
allocation . 1-3

Radar Architecture: Part 2 – Test automation and requirements
traceability . 1-19

Benchmark Trajectories for Multi-Object Tracking 1-34

Simulate Radar Ghosts due to Multipath Return 1-44

Highway Vehicle Tracking with Multipath Radar Reflections 1-56

Track-to-Track Fusion for Automotive Safety Applications 1-67

Track-to-Track Fusion for Automotive Safety Applications in Simulink . 1-81

Automotive Adaptive Cruise Control Using FMCW and MFSK Technology
. 1-84

Increasing Angular Resolution with Virtual Arrays 1-100

Patch Antenna Array for FMCW Radar . 1-109

Simultaneous Range and Speed Estimation Using MFSK Waveform . . 1-120

Automotive Adaptive Cruise Control Using FMCW Technology 1-126

Radar Signal Simulation and Processing for Automated Driving 1-138

Adaptive Tracking of Maneuvering Targets with Managed Radar 1-149

Search and Track Scheduling for Multifunction Phased Array Radar . 1-166

PRF Agility Based on Target Detection . 1-185

Interference Mitigation Using Frequency Agility Techniques 1-188

Frequency Agility in Radar, Communications, and EW Systems 1-196

Waveform Scheduling Based on Target Detection 1-204

Labeling Radar Signals with Signal Labeler . 1-209

iii

Contents

Pedestrian and Bicyclist Classification Using Deep Learning 1-221

Radar Target Classification Using Machine Learning and Deep Learning
. 1-237

Radar and Communications Waveform Classification Using Deep Learning
. 1-249

Spaceborne Synthetic Aperture Radar Performance Prediction 1-260

Airborne SAR System Design . 1-284

Stripmap Synthetic Aperture Radar (SAR) Image Formation 1-299

Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation
. 1-310

Synthetic Aperture Radar System Simulation and Image formation . . 1-319

Processing Radar Reflections Acquired with the Demorad Radar Sensor
Platform . 1-324

Detector Performance Analysis Using ROC Curves 1-331

Monte-Carlo ROC Simulation . 1-338

Receiver Operating Characteristic to Tracker Operating Characteristic
. 1-346

Modeling Radar Detectability Factors . 1-366

MTI Improvement Factor for a Land-Based Radar System 1-384

Radar Link Budget Analysis . 1-400

Planning Radar Network Coverage over Terrain 1-411

Sea Clutter Simulation for a Maritime Radar System 1-423

Radar Scenario Tutorial . 1-441

Use theaterPlot to Visualize Radar Scenario . 1-451

Simulating a Scanning Radar . 1-455

Simulating Passive Radar Sensors and Radar Interferences 1-470

Introduction to Micro-Doppler Effects . 1-488

Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
. 1-503

Simulating a Polarimetric Radar Return for Weather Observation . . . 1-510

iv Contents

Clutter and Jammer Mitigation with STAP . 1-528

Introduction to Space-Time Adaptive Processing 1-533

Acceleration of Clutter Simulation Using GPU and Code Generation . 1-549

Modeling Target Radar Cross Section . 1-553

Simulating a Bistatic Polarimetric Radar . 1-566

Simulating a Bistatic Radar with Two Targets . 1-572

Modeling a Wideband Monostatic Radar in a Multipath Environment 1-576

Introduction to Modeling the Propagation of Radar Signals 1-582

Display Micro-Doppler Shift of Moving Bicyclist 1-603

Radar Performance Analysis Over Terrain . 1-605

Transitioning From Statistical to Physics Based Radar Models 1-614

Doppler Estimation . 1-621

Constant False Alarm Rate (CFAR) Detection . 1-627

Waveform Parameter Extraction from Received Pulse 1-636

Clutter
2

Clutter Modeling . 2-2
Surface Clutter Overview . 2-2
Approaches for Clutter Simulation or Analysis . 2-2
Considerations for Setting Up a Constant Gamma Clutter Simulation 2-2
Related Examples . 2-4

Interference
3

Barrage Jammer . 3-2
Support for Modeling Barrage Jammer . 3-2
Model Barrage Jammer Output . 3-2
Model Effect of Barrage Jammer on Target Echo . 3-3

v

Radar Equation
4

Radar Equation . 4-2
Radar Equation Theory . 4-2
Plot Vertical Coverage Pattern Using Default Parameters 4-3
Compute Peak Power Using Radar Equation Calculator App 4-4

Model Platform Motion Using Trajectory Objects
5

Model Platform Motion Using Trajectory Objects . 5-2
Introduction . 5-2
waypointTrajectory . 5-2
geoTrajectory . 5-5
kinematicTrajectory . 5-7
Summary . 5-13

Kalman Filters
6

Linear Kalman Filters . 6-2
State Equations . 6-2
Measurement Models . 6-3
Linear Kalman Filter Equations . 6-4
Filter Loop . 6-4
Constant Velocity Model . 6-5
Constant Acceleration Model . 6-6

Extended Kalman Filters . 6-7
State Update Model . 6-7
Measurement Model . 6-7
Extended Kalman Filter Loop . 6-8
Predefined Extended Kalman Filter Functions . 6-9

vi Contents

Featured Examples

• “Radar Architecture: Part 1 – System components and requirements allocation” on page 1-3
• “Radar Architecture: Part 2 – Test automation and requirements traceability” on page 1-19
• “Benchmark Trajectories for Multi-Object Tracking” on page 1-34
• “Simulate Radar Ghosts due to Multipath Return” on page 1-44
• “Highway Vehicle Tracking with Multipath Radar Reflections” on page 1-56
• “Track-to-Track Fusion for Automotive Safety Applications” on page 1-67
• “Track-to-Track Fusion for Automotive Safety Applications in Simulink” on page 1-81
• “Automotive Adaptive Cruise Control Using FMCW and MFSK Technology” on page 1-84
• “Increasing Angular Resolution with Virtual Arrays” on page 1-100
• “Patch Antenna Array for FMCW Radar” on page 1-109
• “Simultaneous Range and Speed Estimation Using MFSK Waveform” on page 1-120
• “Automotive Adaptive Cruise Control Using FMCW Technology” on page 1-126
• “Radar Signal Simulation and Processing for Automated Driving” on page 1-138
• “Adaptive Tracking of Maneuvering Targets with Managed Radar” on page 1-149
• “Search and Track Scheduling for Multifunction Phased Array Radar” on page 1-166
• “PRF Agility Based on Target Detection” on page 1-185
• “Interference Mitigation Using Frequency Agility Techniques” on page 1-188
• “Frequency Agility in Radar, Communications, and EW Systems” on page 1-196
• “Waveform Scheduling Based on Target Detection” on page 1-204
• “Labeling Radar Signals with Signal Labeler” on page 1-209
• “Pedestrian and Bicyclist Classification Using Deep Learning” on page 1-221
• “Radar Target Classification Using Machine Learning and Deep Learning” on page 1-237
• “Radar and Communications Waveform Classification Using Deep Learning” on page 1-249
• “Spaceborne Synthetic Aperture Radar Performance Prediction” on page 1-260
• “Airborne SAR System Design” on page 1-284
• “Stripmap Synthetic Aperture Radar (SAR) Image Formation” on page 1-299
• “Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation” on page 1-310
• “Synthetic Aperture Radar System Simulation and Image formation” on page 1-319
• “Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform” on page 1-324
• “Detector Performance Analysis Using ROC Curves” on page 1-331
• “Monte-Carlo ROC Simulation” on page 1-338
• “Receiver Operating Characteristic to Tracker Operating Characteristic” on page 1-346
• “Modeling Radar Detectability Factors” on page 1-366
• “MTI Improvement Factor for a Land-Based Radar System” on page 1-384
• “Radar Link Budget Analysis” on page 1-400

1

• “Planning Radar Network Coverage over Terrain” on page 1-411
• “Sea Clutter Simulation for a Maritime Radar System” on page 1-423
• “Radar Scenario Tutorial” on page 1-441
• “Use theaterPlot to Visualize Radar Scenario” on page 1-451
• “Simulating a Scanning Radar” on page 1-455
• “Simulating Passive Radar Sensors and Radar Interferences” on page 1-470
• “Introduction to Micro-Doppler Effects” on page 1-488
• “Ground Clutter Mitigation with Moving Target Indication (MTI) Radar” on page 1-503
• “Simulating a Polarimetric Radar Return for Weather Observation” on page 1-510
• “Clutter and Jammer Mitigation with STAP” on page 1-528
• “Introduction to Space-Time Adaptive Processing” on page 1-533
• “Acceleration of Clutter Simulation Using GPU and Code Generation” on page 1-549
• “Modeling Target Radar Cross Section” on page 1-553
• “Simulating a Bistatic Polarimetric Radar” on page 1-566
• “Simulating a Bistatic Radar with Two Targets” on page 1-572
• “Modeling a Wideband Monostatic Radar in a Multipath Environment” on page 1-576
• “Introduction to Modeling the Propagation of Radar Signals” on page 1-582
• “Display Micro-Doppler Shift of Moving Bicyclist” on page 1-603
• “Radar Performance Analysis Over Terrain” on page 1-605
• “Transitioning From Statistical to Physics Based Radar Models” on page 1-614
• “Doppler Estimation” on page 1-621
• “Constant False Alarm Rate (CFAR) Detection” on page 1-627
• “Waveform Parameter Extraction from Received Pulse” on page 1-636

1 Featured Examples

1-2

Radar Architecture: Part 1 – System components and
requirements allocation

This example is the first part of a two-part series on using Simulink to design and test a radar system
given a set of requirements. It starts by introducing a set of performance requirements that must be
satisfied by the final design. A radar system architecture is then developed using Simulink System
Composer. The example next demonstrates how to connect the radar requirements to the
architecture and a corresponding design. Finally, a functioning model of a radar system is created by
providing concrete implementations to the components of the architecture.

The second example in the series discusses testing of the developed model and verification of the
requirements. It shows how to use Simulink Test to set up test suites and run Monte Carlo
simulations to verify the linked requirements. Part 2 also explores a scenario when the stated
requirements have been revised. It demonstrates how to trace the changes in the requirements to the
corresponding components of the design and make modifications to the implementation and tests.

Performance Requirements

Radar system design typically begins with a set of requirements. The real-world radar systems must
satisfy dozens or hundreds of requirements. In this example we consider an X-band radar system that
must satisfy the following two performance requirements:

• R1: The radar must detect a Swerling 1 Case target with a radar cross section (RCS) of 1 m2 at
the range of 6000 m with a probability of detection of 0.9 and the probability of false alarm of
1e-6;

• R2: When returns are detected from two Swerling 1 Case targets separated in range by 70 m, with
the same azimuth and elevation, the radar must resolve the two targets and generate two unique
target reports 80 percent of the time.

Virtual Test Bed

As the first step we set up a virtual test bed for a radar system that will be used to implement and
test our design. We will demonstrate that this test bed is useful for tracing of the performance
requirements to the individual components of the system, making iterative design changes, and
testing and verifying the system’s performance. We start by creating a general top-level architecture
model using Simulink System Composer. We then show in more detail an architecture of a radar
sensor component and the part of the test bed that simulates the environment and the radar targets.

Top-Level Architecture

The architecture model specifies only the conceptual components of the system, their interfaces, and
links between them. The components of the architecture model are not required to have a concrete
implementation. As will be shown further in this example, Simulink System Composer allows for
defining specific Simulink behavior for some of the components while leaving other components
specified only at the architecture level. Such a modular-based design is convenient and flexible since
the behavior of the individual components can be modified or completely changed without the need to
make any changes to other parts of the system.

In addition to the Radar Sensor component that models the actual radar sensor, the test bed also
includes:

• Power Substation - Supplies power to the radar sensor;

 Radar Architecture: Part 1 – System components and requirements allocation

1-3

• Control Center - Passes control commands to the radar sensor through Communications
Link and receives the radar data back;

• Targets and Environment - Models the radar waveform propagation through the environment
and the interaction of the waveform with the targets. Radar Sensor is connected to Target and
Environment through a set of ports marked Tx, Rx, and TargetsPos. Tx and Rx links are used
to pass the radar waveform to and from Targets and Environment. TargetsPos is used to
pass the information about the targets positions to Radar Sensor in order to simulate the
transmitted and received waveform in the directions of the targets.

Open the top-level architecture.

open_system('slexRadarArchitectureExample')

1 Featured Examples

1-4

Radar Sensor

Each component in an architecture model can be further decomposed into subcomponents. As a next
step we define architecture for a radar sensor. When Radar Sensor is decomposed, Power, Tx, Rx,
CmdRx, and DataTx ports defined at the top level become available as the external ports. Open the
Radar Sensor component.

open_system("slexRadarArchitectureExample/Radar Sensor");

We define the following components to create an architecture model of a radar sensor:

• Resource Scheduler is responsible for allocating the system resources within a dwell. It
receives control commands from Control Center through the external CmdRx port. To indicate
the flow of the control signals in the radar sensor architecture, Resource Scheduler is also
linked to every component inside Radar.

• Waveform Generator produces samples of the radar waveform.
• Transmit Array passes the transmitted waveform to Target and Environment through the

external Tx port.
• Receiver Array receives back the reflected waveform from Target and Environment

through the external Rx port.
• Signal Processor performs beamforming, matched filtering, and pulse integration and passes

the detections to Data Processor.
• Data Processor creates radar reports or radar tracks and passes them back to Control

Center.

 Radar Architecture: Part 1 – System components and requirements allocation

1-5

Notice that this architecture model of a radar sensor is very general. It does not make any
assumptions about the type of a transmitted waveform, the shape or size of the antenna array, or the
implementation of the signal and the data processing chains. The same architecture can be used to
implement a large variety of different radar sensors. Further in this example we will implement only a
subset of the above listed components leaving out Resource Scheduler and Data Processor.

Targets and Environment

Targets and Environment can be decomposed into two subcomponents:

• Targets outputs targets positions and velocities.
• Propagation models the propagation of the plane wave emitted by Transmit Array through

the environment, reflection from the radar targets, and propagation back to Receive Array.

Open Targets and Environment component.

open_system("slexRadarArchitectureExample/Targets and Environment");

1 Featured Examples

1-6

Requirements Traceability

Simulink Requirements is a tool that provides a way to link the requirements to the components of
the architecture responsible for implementing the corresponding functionality. When either the
requirements or the model change, Simulink Requirements provides a convenient way to trace the
changes to the corresponding tests and verify that the model's performance and the requirements are
always in agreement.

Requirements Manager can be launched through the Apps tab. Requirements Editor then can be
accessed by navigating to the Requirements tab and selecting Requirements Editor. To create a

 Radar Architecture: Part 1 – System components and requirements allocation

1-7

new set of requirements for the model, click on New Requirement Set. For this example, we create
a requirements set and add R1 and R2 to it. Open these requirements in Requirements Editor.

open('slreqRadarArchitectureExampleRequirements.slreqx')

Requirements Editor lists the maximum range and the range resolution requirements. In the left
panel it also shows the Verified and Implemented status for each requirement. At this moment,
both requirements are not implemented and not verified. In order to change the Implemented status
of a requirement it must be linked to a component of the architecture that implements the
corresponding function. We link both requirements to Waveform Generator and Signal
Processor. Notice that Requirements Manager at the bottom also shows the status of R1 and R2.
After linking the requirements to the components, Requirements Manager shows that the status of R1
and R2 has changed to Implemented. When a requirement is selected in Requirements Manager, the
components to which it is linked are highlighted with a purple frame. The linked components are also
shown in the Links sections of the Details tab on the right.

1 Featured Examples

1-8

Another convenient way to visualize the links between the requirements and the components of the
architecture is the Traceability Matrix that can be generated by clicking on Traceability Matrix in
the Requirements tab of Requirements Editor. It clearly shows which components are responsible
for implementation of each requirement.

 Radar Architecture: Part 1 – System components and requirements allocation

1-9

Component Implementation

To simulate a radar system, we now need to provide a concrete behavior to the components of the
architecture model. System Composer allows for specifying a Simulink behavior for some components
while leaving the behavior of other components undefined. This provides a lot of flexibility to the
design and simulation since we can build a functioning and testable model with some of the
components modeled in detail while other components defined only at the abstract level. In this
example we will only specify the concrete behavior for the components of the radar sensor needed to
implement generation, transmission, reception, and processing of the radar signal. We will also
provide a concrete implementation to Targets and Environment.

To specify the dimensions of signals within the model, the example assumes that the targets positions
are specified by a three-row matrix tgtpos, the targets velocities are specified by a three-row matrix
tgtvel, and the targets RCS are specified by a vector tgtrcs.

1 Featured Examples

1-10

System Parameters

To provide the Simulink behavior to the components of the radar sensor we first need to identify a set
of radar design parameters that could satisfy the stated requirements. A set of parameters for a radar
system that would satisfy R1 and R2 can be quickly found by performing a radar range equation
analysis in the Radar Designer app. The app computes a variety of radar performance metrics and
visualizes the detection performance of the radar system as a function of range. We use the Metrics
and Requirements table to set the objective values of the maximum range and the range resolution
requirements to the desired values specified in R1 and R2. Then we adjust the system parameters
until the stoplight chart indicates that the system’s performance satisfies the objective requirement.
The resulting set of the radar design parameters is:

• radar frequency - 10 GHz;
• peak power - 6000 W;
• pulse duration - 0.4 μs;
• pulse bandwidth - 2.5 MHz;
• pulse repetition frequency – 20 kHz;
• number of transmitted pulses – 10;
• antenna gain – 26 dB;
• noise figure – 0 dB;

Open this design in Radar Designer app.

radarDesigner('RadarDesigner_RectangularWaveform.mat');

 Radar Architecture: Part 1 – System components and requirements allocation

1-11

Waveform Generator

The analysis performed in the Radar Designer app assumes the time-bandwidth product to be equal
to 1. This means that the transmitted waveform is an unmodulated rectangular pulse. We can use the
Pulse Waveform Analyzer app to confirm that the derived waveform parameters will result in the
desired performance and satisfy R1 and R2.

Start the Pulse Waveform Analyzer app with the waveform parameters defined in this example.

pulseWaveformAnalyzer('PulseWaveformAnalyzer_RectangularWaveform.mat');

The app shows that the range resolution and the unambiguous range agree well with our
requirements.

To implement this behavior in the radar model, the Waveform Generator component needs to
contain only a single Simulink block generating a rectangular waveform. The output of the
Rectangular Waveform block is connected to the external Waveform port linked to the Transmit
Array component. Since in this example we are not modeling the command signals, Cmd input is
linked to a terminator.

1 Featured Examples

1-12

We set the Output signal format property of the block to Pulses, which means that every pulse
repetition interval (PRI) of 1/prf seconds, the block will produce a column vector of fs/prf
complex waveform samples.

Transmit Array

The Transmit Array component comprises the following Simulink blocks:

• Transmitter - transmits the waveform generated by Waveform Generator with the specified
peak power and transmit gain.

• Range Angle Calculator - computes the directions towards the targets assuming the radar is
placed on static platform located at the origin. The target directions are used as Ang input to
Narrowband Tx Array.

• Narrowband Tx Array - models an antenna array for transmitting narrowband signals. It
outputs copies of the transmitted waveform radiated in the directions of the targets.

The radar range equation analysis identified that the transmit gain should be 26 dB. We set the Gain
property of the Transmitter block to 20 dB and use an antenna array to get an additional gain of 6
dB. A phased array antenna with the desired properties can be designed using the Sensor Array
Analyzer app. In this example we use a 4-element uniform linear array that has array gain of
approximately 6 dB.

Open the array model in the Sensor Array Analyzer app.

sensorArrayAnalyzer('SensorArrayAnalyzer_ULA.mat');

 Radar Architecture: Part 1 – System components and requirements allocation

1-13

Simulink System Composer requires explicit specification of the dimensions, sample time, and
complexity of the input signals. We set the dimensions of the Waveform input to [fs/prf 1], the
sample time to 1/prf, and the complexity to 'complex'. The dimensions of TargetsPos input are
set to size(tgtpos), leaving the default setting for the corresponding sample time and complexity.

1 Featured Examples

1-14

Receive Array

• Narrowband Rx Array - models the receive antenna array. It is configured using the same
properties as the corresponding block in the Transmit Array component. At each array
element the block combines the signals received from every target adding appropriate phase
shifts given the targets directions computed by Range Angle Calculator. The output of the
Narrowband Rx Array block is a [fs/prf num_array_elements] matrix.

• Receiver Preamp - adds gain of 20 dB to the received signal.

 Radar Architecture: Part 1 – System components and requirements allocation

1-15

The Rx input is a matrix of received waveform samples with columns corresponding to
size(tgtpos,2) targets. The dimensions of Rx must be set to [fs/prf size(tgtpos,2)], the
sample time to 1/prf, and the complexity to 'complex'.

Signal Processor

Signal Processor implements a simple signal processing chain that consists of:

• Phase Shift Beamformer - combines the received signals at each array element. In this
example the beamforming direction is set to the broadside.

• Matched Filter - performs matched filtering to improve SNR. The coefficients of the matched
filter are set to match the transmitted waveform.

• Time Varying Gain - compensates for the free space propagation loss.
• Noncoherent Integrator - integrates the magnitudes of the 10 received pulses to further

improve SNR.

The dimensions of the Signal input must be configured to [fs/prf num_array_elements], the
sample time to 1/prf, and the complexity must be set to 'complex'

Targets and Environment

The Targets component is implemented using a single Platform block.

The Propagation component consists of :

• Free Space Channel - models the two-way propagation path of the radar waveform. The origin
position and velocity inputs of the Free Space Channel block are set to zero to indicate that the

1 Featured Examples

1-16

radar is located at the origin and that it is not moving. The destination position and velocity inputs
are connected to the targets positions and velocities through TargetsPos and TargetVel ports.

• Radar Target - models the RCS and target fluctuation effects. Since in this example we are
considering slow fluctuating Swerling 1 Case targets, the Update input is set to false. We also set
the simulation stop time to 10/prf indicating that a single simulation run constitutes a single
coherent processing interval (CPI).

The dimensions of Tx input must be set to [fs/prf size(tgtpos,2)], the sample time to 1/prf,
and complexity to 'complex'.

Simulation Output

Specifying Simulink behavior for the above blocks is enough to obtain a model of a radar system that
can produce radar detections. Prior to proceeding with testing the model and verifying the specific
performance requirements, we want to run the simulation and check whether it generates the results
as expected. Consider three targets with the following parameters:

% Target positions
tgtpos = [[2024.66;0;0],[3518.63;0;0],[3845.04;0;0]];

% Target velocities
tgtvel = [[0;0;0],[0;0;0],[0;0;0]];

% Target RCS
tgtrcs = [1.0 1.0 1.0];

Adding the Simulation Data Inspector to log the output of the Signal Processer component and
running a simulation, results in the range profile shown below. As expected, we get three distinct
peeks corresponding to the three targets in the simulation.

% Set the model parameters
helperslexRadarArchitectureParameters;

% Run the simulation
simOut = sim('slexRadarArchitectureExample');

data = simOut.logsout{1}.Values.Data;

 Radar Architecture: Part 1 – System components and requirements allocation

1-17

% Plot results
figure;
plot(range_gates, data(numel(range_gates)+1:end));
xlabel('Range (m)');
ylabel('Power (W)');
title('Signal Processor Output');

grid on;

Summary

This example is the first part of a two-part series on how to design and verify a radar system in
Simulink starting from a list of performance requirements. It shows how to build a radar system
architecture using Simulink System Composer which can be used as a virtual test bed for designing
and testing radar system. Part 1 also demonstrates how to link the performance requirements to the
components of the architecture and how to implement the behavior of the components using Simulink
to obtain a functioning and testable model.

In Part 2 of this example we show how to set up test suites to test the created radar design and how
to verify that the stated performance requirements are satisfied.

1 Featured Examples

1-18

Radar Architecture: Part 2 – Test automation and requirements
traceability

This example is the second part of a two-part series on how to design and test a radar system in
Simulink® based on a set of performance requirements. It discusses testing of the model developed
in Part 1 and verification of the initial requirements. It shows how to use Simulink Test™ for setting
up test suites to verify requirements linked to the components of the system. The example also
explores a scenario when the stated requirements have been revised leading to the changes in the
design and tests.

Part 1 of this example starts with a set of performance requirements. It develops an architecture
model of a radar system using Simulink System Composer™. This architecture model is employed as
a virtual test bed for testing and verifying the radar system designs. Part 1 shows how to use
Simulink Requirements™ to link the requirements to the components of the architecture. It also
demonstrates how to implement the individual components of the architecture using Simulink.

Automated Testing

Prior to setting up the tests we load the model constructed in the Part 1 of the example.

open_system('slexRadarArchitectureExample');

Simulink Test Manager is a tool for creating tests suites for the model. To access Test Manager click
on Simulink Test in the Apps tab, then navigate to Tests tab and click Simulink Test Manager. To
get started with the tests, we create a new test file for the model by clicking on New Test File. Then
we add two separate test suites one for each requirement. The test suites can be further configured
by:

• Adding a description to each test suite to shortly describe what functionality is being tested;
• Linking the test suite to one or multiple requirements. The tests in the test suite must pass in

order for the requirements to be verified;
• Adding callbacks for setup before and cleanup after the test run. In this example we need a global

variable added to the base workspace in order to aggregate the results of multiple Monte Carlo
runs within a single test suite.

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-19

Further we configure the tests within the test suites. The changes are made only in System Under
Test, Parameter Overrides, Iterations, and Custom Criteria sections.

• In the System Under Test section the Model field must be set to the name of the model, which in
this example is slexRadarArchitectureExample.

1 Featured Examples

1-20

• The Parameter Overrides section is used to assign different values to the parameters in the base
workspace during a test execution. We use this section to specify the targets parameters for the
maximum range test and the range resolution test.

For the maximum range test we specify a single target with 1 m2 RCS at the range of 6000 m from
the radar as stated in R1.

For the range resolution test, we specify two targets with different RCS that are separated in range
by 70 m as required by R2.

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-21

• Because of the random noise and the target fluctuation effects we can only verify the averaged
radar system performance collected over multiple test runs. The Iterations section of the test can
be used to configure the test to run multiple times to implement Monte Carlo simulations. We add
a custom script to the Scripted Iterations subsection. In this example we only add 10 iterations to
the test. However, to robustly verify the performance of the system more iterations would be
required.

• The Custom Criteria section allows to specify a custom rule that verifies the test results at the end
of each iteration. We configure it to run helperslexRadarArchitectureTestCriteria helper
function that processes results of each test iteration and stores them in the detectionResults
variable in the base workspace. The function computes the number of the detection threshold
crossings. If this number is equal to the number of targets in the test, the iterations is considered
to pass, otherwise the iteration is declared as failed. On the last iteration
helperslexRadarArchitectureTestCriteria computes the total number of passed
iterations. The second argument to this helper function is the percentage of the iterations that
must pass for the entire test to pass. The maximum range test requires that at least 90% of all
iterations have passed. Since the range resolution test models two independent targets, it requires
that at least 80% of all test iterations are successful.

1 Featured Examples

1-22

Open this test suite in Test Manager.

open('slexRadarArchitectureTests.mldatx')

After adding the tests and linking them to the requirements, the status of the requirements in
Requirements Editor indicates that the verification has been added but the tests have not yet been
executed.

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-23

Now the tests can be launched. After running both test suites, we can inspect the results of each
individual iteration using Data Inspector. The custom criteria helper function also prints status of
each iteration to the command window.

1 Featured Examples

1-24

Since both tests passed, Requirements Editor now shows that both requirements have been
implemented and verified.

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-25

Revised Requirements

It is common that during a design process the initial requirements are revised and changed. In this
example we assume that the maximum range has been increased to 8000 m and the range resolution
has been set to 35 m. The update requirements are

• R1: The radar must detect a Swerling 1 Case target with a radar cross section (RCS) of 1 m2 at
the range of 8000 m with a probability of detection of 0.9 and the probability of false alarm of
1e-6;

• R2: When returns are detected from two Swerling 1 Case targets separated in range by 35 m, with
the same azimuth, the radar must resolve the two targets and generate two unique target reports
80 percent of the time;

Making changes to requirements in Requirements Editor will generate change issues and highlight
the Summary status of the corresponding requirement in red. The links to the components that

1 Featured Examples

1-26

implement the changed requirement and to the tests that verify it are also highlighted. This way it is
easy to identify which components of the design and which tests need to be updated in order to
address the changes in the requirement and to test them.

The effects of changes in the requirements or in the component implementations can also be
conveniently monitored through the requirements Traceability Matrix.

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-27

Updated System Parameters

The new maximum range requirement is beyond the current unambiguous range of the system which
equals to 7494.8 m. To satisfy the new requirement we need to increase the unambiguous range. This
can be accomplished by lowering the PRF. Setting the PRF to 16 kHz will result in the unambiguous
range of 9368.5 m which is well beyond the required maximum range of 8000 m.

Since the current radar design transmits unmodulated rectangular pulses, the resolution limit of the
system is determined by the pulse width. The current range resolution limit is 60 m. The new
requirement of 35 m is almost two times lower. A rectangular pulse which satisfies this requirement
would have to be twice as short, reducing the available power at the same range by half. The
requirement analysis using the Radar Designer app shows that this system will not be able to reach
the required detection performance at the maximum range of 8000 m. To achieve the required
maximum range and range resolution, without increasing the peak transmitted power or the antenna
gain, we need to adopt a new waveform with the time-bandwidth product that is larger than 1.
Setting the pulse width to 1 μs and the bandwidth to 5 MHz will provide the desired resolution.

1 Featured Examples

1-28

Open this design in Radar Designer app.

radarDesigner('RadarDesigner_LFMWaveform.mat');

The Pulse Waveform Analyzer app can be used to select a radar waveform from several alternatives.
In this example we use the LFM waveform.

pulseWaveformAnalyzer('PulseWaveformAnalyzer_LFMWaveform.mat');

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-29

Revised Design

A convenient way to modify the behavior of a system's components is to add an alternative design by
creating a variant. This is done by right clicking on the component and selecting Add Variant
Choice. We add a variant to Waveform Generator and add Simulink behavior to it to implement the
LFM waveform generation.

1 Featured Examples

1-30

The Linear FM block is configured such that the pulse width is set to the new value of 1 μs, the
sweep bandwidth is set to 5 MHz, and the PRF property is set to the updated PRF value of 16 kHz.
Now we can run the model with the LFM waveform.

% Set the model parameters
helperslexRadarArchitectureParameters;

% Update the model parameters to use the LFM waveform
helperslexRadarArchitectureParametersLFM;

simOut = sim('slexRadarArchitectureExample.slx');

data = simOut.logsout{1}.Values.Data;

figure;
plot(range_gates, data(numel(range_gates)+1:end));

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-31

xlabel('Range (m)');
ylabel('Power (W)');
title('Signal Processor Output');

grid on;

Updated Tests

Before verifying that the radar system with LFM can satisfy the updated requirements, we need to
make corresponding modifications to the tests by updating the targets positions.

• Set the target range in the maximum range test to 8000 m

• Change target ranges in the range resolution test so the targets are positioned 35 m from each
other

1 Featured Examples

1-32

After updating the tests, we need to clear all change issues in Requirements Editor. This is done by
clicking Show Links in the Requirements tab, then selecting the links and clicking on Clear All
button in Change Information section of the Details panel on the right. When the issues have been
cleared, the tests can be launched. The new design will pass the updated tests and verify that the
system satisfies the updated requirements confirming the predictions made by the Radar Designer
app.

Summary

This example is the second part of a two-part series on how to design and test a radar system in
Simulink based on a set of performance requirements. It showed how to use Simulink Test to test the
model developed in Part 1, how to link the test to the requirements, and how to verify that the
requirements are satisfied by running Monte Carlo simulations. The example also illustrated how to
trace changes in the requirements to the corresponding components and how to create alternative
designs by adding variants to the model. Part 1 of this example started with the requirements that
must be satisfied by the final design. It used Simulink System Composer to develop an architecture
model of a radar system that can serve as a virtual test bed. Part 1 then showed how to use Simulink
Requirements to link the requirements to the components and how to implement the individual
components of the architecture using Simulink.

 Radar Architecture: Part 2 – Test automation and requirements traceability

1-33

Benchmark Trajectories for Multi-Object Tracking
This example shows how to generate and visualize trajectories of multiple aircraft using
radarScenario and waypointTrajectory.

Introduction

The six aircraft trajectories modeled in this example are described in [1]. The aircraft fly in an
arrangement intended to be received by a radar located at the origin.

Choice of Interpolant

Conceptually speaking, a trajectory is a curve through space which an object travels as a function of
time. To define the curve, you may think of a curve through space that passes through a set of points
called waypoints connected by an interpolating function called an interpolant. An interpolant allows
you to define the path between waypoints via a continuous function. Common interpolants are
polynomial based (for example, piecewise linear or cubic splines). For a rapidly changing trajectory,
more waypoints are required to keep the interpolated curve as close to the true curve as possible;
however, we can reduce the number of required points by choosing interpolants carefully.

Many motion models used in track filters consist of "constant velocity," "constant turn," or "constant
acceleration" profiles. To accommodate these motion models, the interpolant used in the
waypointTrajectory object is based on a piecewise clothoid spline (horizontally) and a cubic
spline (vertically). The curvature of a clothoid spline varies linearly with respect to distance traveled;
this lets us model straight and constant turns with ease, having one extra degree of freedom to
transition smoothly between straight and curved segments. Similarly, objects in the air experience the
effects of gravity, following a parabolic (quadratic) path. Having a cubic spline to model vertical
elevation allows us to model the path with a similar extra degree of freedom.

Once the physical path through space of an object is known (and set), the speed of the object as a
function of distance traveled is determined via cubic Hermite interpolation. This is useful for
modeling trajectories of objects that accelerate through turns or straight segments.

The benchmark trajectories we are using consist of straight, constant-g turns, and turns with
acceleration.

Waypoint Construction

The following file contains tables of waypoints and velocities (in units of meters and meters per
second) that can be used to reconstruct six aircraft trajectories. Load it into MATLAB and examine
the table containing the first trajectory.

load('radarBenchmarkTrajectoryTables.mat', 'trajTable');
trajTable{1}

ans =

 14x3 table

 Time Waypoints Velocities
 _____ _________________________ _____________________________

 0 72947 29474 -1258 -258.9 -129.69 0
 60 57413 21695 -1258 -258.9 -129.66 0

1 Featured Examples

1-34

 62 56905 21417 -1258 -245.3 -153.89 0
 78.1 54591 17566 -1258 -20.635 -288.86 0
 80 54573 17016 -1258 -2.8042 -289.59 0
 83 54571 16147 -1258 -0.061 -289.56 0
 110 54571 8329 -1258 0 -289.56 0
 112.7 54634 7551.5 -1258 58.979 -283.56 0
 120 55718 5785.5 -1258 226.41 -180.59 0
 129 58170 5172.8 -1258 284.74 52.88 0
 132 59004 5413.9 -1258 274.26 93.05 0
 137.8 60592 5962.2 -1258 273.62 94.76 0
 147.8 63328 6909.9 -1258 273.62 94.76 0
 185 73508 10435 -1258 273.62 94.76 0

Scenario Generation

The table contains a set of waypoints and velocities that the aircraft passes through at the
corresponding time.

To use the control points, you can create a scenario with six platforms and assign a trajectory to each:

scene = radarScenario('UpdateRate',10);

for n=1:6
 plat = platform(scene);
 traj = trajTable{n};
 plat.Trajectory = waypointTrajectory(traj.Waypoints, traj.Time, 'Velocities', traj.Velocities);
end

Trajectory Visualization

Once you have the scenario and plotter set up, you can set up a theaterPlot to create an animated
view of the locations of the aircraft as time progresses.

helperPlot = helperBenchmarkPlotter(numel(scene.Platforms));

while advance(scene)
 % extract the pose of each of the six aircraft
 poses = platformPoses(scene);

 % update the plot
 update(helperPlot, poses, scene.SimulationTime);
end

 Benchmark Trajectories for Multi-Object Tracking

1-35

The trajectories plotted above are three-dimensional. You can rotate the plot so that the elevation of
the trajectories is readily visible. You can use the view and axis commands to adjust the plot.
Because the trajectories use a NED (north-east-down) coordinate system, elevation above ground has
a negative z component.

view(60,10);
axis square
grid minor
set(gca,'ZDir','reverse');

1 Featured Examples

1-36

Trajectory 1

It may be instructive to view the control points used to generate the trajectories. The following figure
shows the first trajectory, which is representative of a large aircraft.

The control points used to construct the path are plotted on the leftmost plot. Only a few waypoints
are needed to mark the changes in curvature as the plane takes a constant turn.

The plots on the right show the altitude, magnitude of velocity (speed), and magnitude of
acceleration, respectively. The speed stays nearly constant throughout despite the abrupt change in
curvature. This is an advantage of using the clothoid interpolant.

[time, position, velocity, acceleration] = cumulativeHistory(helperPlot);
helperTrajectoryViewer(1, time, position, velocity, acceleration, trajTable);

 Benchmark Trajectories for Multi-Object Tracking

1-37

Trajectory 2

The second trajectory, shown below, represents the trajectory of a small maneuverable aircraft. It
consists of two turns, having several changes in acceleration immediately after the first turn and
during the second turn. More waypoints are needed to adjust for these changes, however the rest of
the trajectory requires fewer points.

helperTrajectoryViewer(2, time, position, velocity, acceleration, trajTable);

1 Featured Examples

1-38

Trajectory 3

The third trajectory, shown below is representative of a higher speed aircraft. It consists of two
constant turns, where the aircraft decelerates midway throughout the second turn. You can see the
control points that were used to mark the changes in velocity and acceleration in the x-y plot on the
left.

helperTrajectoryViewer(3, time, position, velocity, acceleration, trajTable);

 Benchmark Trajectories for Multi-Object Tracking

1-39

Trajectory 4

The fourth trajectory, also representative of a higher speed aircraft, is shown below. It consists of two
turns, where the aircraft accelerates and climbs to a higher altitude.

helperTrajectoryViewer(4, time, position, velocity, acceleration, trajTable);

1 Featured Examples

1-40

Trajectory 5

The fifth trajectory is representative of a maneuverable high-speed aircraft. It consists of three
constant turns; however it accelerates considerably throughout the duration of the flight. After the
third turn the aircraft ascends to a level flight.

helperTrajectoryViewer(5, time, position, velocity, acceleration, trajTable);

 Benchmark Trajectories for Multi-Object Tracking

1-41

Trajectory 6

The sixth trajectory is also representative of a maneuverable high-speed aircraft. It consists of four
turns. After the second turn the aircraft decreases altitude and speed and enters the third turn. After
the third turn it accelerates rapidly and enters the fourth turn, continuing with straight and level
flight.

helperTrajectoryViewer(6, time, position, velocity, acceleration, trajTable);

1 Featured Examples

1-42

Summary

This example shows how to use waypointTrajectory and radarScenario to create a multi-object
tracking scenario. In this example you learned the concepts behind the interpolant used inside
waypointTrajectory and were shown how a scenario could be reproduced with a small number of
waypoints.

Reference

1 W.D. Blair, G. A. Watson, T. Kirubarajan, Y. Bar-Shalom, "Benchmark for Radar Allocation and
Tracking in ECM." Aerospace and Electronic Systems IEEE Trans on, vol. 34. no. 4. 1998

 Benchmark Trajectories for Multi-Object Tracking

1-43

Simulate Radar Ghosts due to Multipath Return
This example shows how to simulate ghost target detections and tracks due to multipath reflections,
where signal energy is reflected off another target before returning to the radar. You’ll simulate
ghosts with both a statistical radar model and a more detailed transceiver model that generates IQ
signals.

Motivation

Many highway scenarios involve not only other cars, but also barriers and guardrails. Consider the
simple highway created using the Driving Scenario Designer (Automated Driving Toolbox) app. For
more information on how to model barriers in a drivingScenario see the “Sensor Fusion Using
Synthetic Radar and Vision Data” (Automated Driving Toolbox) example. Use the function
helperSimpleHighwayScenarioDSD exported from the Driving Scenario Designer to get our
highway scenario and a handle to the ego vehicle.

% Set random seed for reproducible results
rndState = rng('default');

% Create scenario using helper
[scenario, egoVehicle] = helperSimpleHighwayScenarioDSD();

To model the detections generated by a forward-looking automotive radar, use the
radarDataGenerator. Use a 77 GHz center frequency, which is typical of automotive radar. We'll
generate detections up to 100 meters in range, and choose a PRF that allows us to unambiguously
measure closing rates up to 67 m/s.

% Automotive radar system parameters
fc = 77e9; % Center frequency (Hz)
rangeMax = 100; % Maximum range (m)
rangeRes = 2.5; % Range resolution (m)
vMax = 67; % Maximum closing rate of cars (m/s)

c = physconst('LightSpeed'); % Speed of light (m/s)
bw = rangeres2bw(rangeRes,c); % Signal bandwidth (Hz)

lambda = freq2wavelen(fc,c); % Wavelength (m)
prf = speed2dop(2*vMax,lambda); % Maximum Doppler shift (Hz)
Ramb = c/(2*prf); % Maximum unambiguous range (m)

% Create a forward-looking automotive radar
rdr = radarDataGenerator(1, 'No scanning', ...
 'MountingLocation', [3.4 0 0.2], ...
 'AzimuthResolution', 4, ...
 'RangeResolution', rangeRes, ...
 'CenterFrequency', fc, ...
 'Bandwidth', bw, ...
 'HasRangeRate', true, ...
 'RangeRateResolution', 10, ...
 'ReferenceRange', 100, ...
 'FieldOfView', [70 5], ...
 'RangeLimits', [0 rangeMax], ...
 'RangeRateLimits', [-100 100], ...
 'HasRangeAmbiguities', true, ...
 'MaxUnambiguousRange', Ramb, ...
 'HasRangeRateAmbiguities', true, ...

1 Featured Examples

1-44

 'MaxUnambiguousRadialSpeed', vMax/2, ...
 'TargetReportFormat', 'Detections', ...
 'HasOcclusion', false, ...
 'Profiles',actorProfiles(scenario));

% Show all detections for illustrative purposes
rdr.DetectionProbability = 1;

% Create bird's eye plot and detection plotter function
[~,detPlotterFcn] = helperSetupBEP(egoVehicle,rdr);

% Generate raw detections
time = scenario.SimulationTime;
tposes = targetPoses(egoVehicle);
[dets,~,config] = rdr(tposes,time);

% Plot detections
detPlotterFcn(dets,config);
title('Free Space (no multipath)')

The preceding figure shows the locations of the detections along the target vehicle as well as along
the side of the barrier. However, detections are not always so well-behaved. One phenomenon that
can pose considerable challenges to radar engineers is multipath. Multipath is when the signal not
only propagates directly to the intended target and back to the radar, but includes additional
reflections off objects in the environment.

 Simulate Radar Ghosts due to Multipath Return

1-45

Multipath Reflections

When a radar signal propagates to a target of interest it can arrive through various paths. In addition
to the direct path from the radar to the target and then back to the radar, there are other possible
propagation paths. The number of paths is unbounded, but with each reflection, the signal energy will
decrease. Commonly, a propagation model considering three-bounce paths is used to model this
phenomenon.

To understand the three-bounce model, first consider the simpler one-bounce and two-bounce paths,
as shown in the following figures.

One-Bounce Path

The one-bounce path propagates from the radar (1) to the target (2) and then is reflected from the
target (2) back to the radar. This is often referred to as the direct or line-of-sight path.

Two-Bounce Paths

There exist two unique propagation paths that consist of two bounces.

The first two-bounce path propagates from the radar (1) to a reflecting surface (3), then to the target
(2) before returning to the radar (1). Because the signal received at the radar arrives from the last
bounce from the true target, it will generate ghost detections along the same direction as the true

1 Featured Examples

1-46

target. Because the path length for this propagation is longer, it will appear at a farther range than
the true target detections.

The second two-bounce path propagates from the radar (1) to the target (2), then to the reflecting
surface (3) before returning to the radar (1). In this case, the ghost detections will appear on the
other side of the reflecting surface since that is the direction that the radar will receive the reflected
signal.

Notice that the path length for both of the two-bounce paths is the same. As a result, the measured
range and range rate for these paths will be the same as well.

 Simulate Radar Ghosts due to Multipath Return

1-47

Three-Bounce Path

The three-bounce path reflects off the barrier twice. This path never propagates directly to the target
or directly back to the radar. The three-bounce ghost detections will appear on the other side of the
reflecting surface since that is the direction that the radar will receive the reflected signal.
Additionally, it has the longest propagation path length of the three-bounce paths and will therefore

1 Featured Examples

1-48

have the longest measured range of the three paths. This path corresponds to a mirror reflection of
the true target on the other side of the barrier.

Model Ghost Target Detections

Set the HasGhosts property on the radarDataGenerator to model the detections generated from
these three-bounce paths.

% Enable ghost target model
release(rdr);
rdr.HasGhosts = true;

% Generate raw detections
time = scenario.SimulationTime;
tposes = targetPoses(egoVehicle);
[dets,~,config] = rdr(tposes,time);

% Plot detections
detPlotterFcn(dets,config);
title('Simple Multipath Environment');

The previous figure reproduces the analysis of the three propagation paths. The first 2-bounce ghosts
lie in the direction of the target with a slightly larger range. The second 2-bounce lie in the direction
of the mirrored image of the target generated by the reflection from the barrier and at the same
range as the first 2-bounce. And the 3-bounce detections follow the outline of the imaged ghost of the
target vehicle.

 Simulate Radar Ghosts due to Multipath Return

1-49

Ghost Tracks

Because the range and velocities of the ghost target detections are like the range and velocity of the
true targets, they will have kinematics that are consistent for a tracker that is configured to track the
true target detections. This consistency between the kinematics of real and ghost targets results in
tracks being generated for the ghost target on the other side of the barrier.

Set the TargetReportFormat property on the radarDataGenerator to 'Tracks' to model the
tracks generated by a radar in the presence of multipath.

% Output tracks instead of detections
release(rdr);
rdr.TargetReportFormat = 'Tracks';
rdr.ConfirmationThreshold = [2 3];
rdr.DeletionThreshold = [5 5];
FilterInitializationFcn = 'initcvekf'; % constant-velocity EKF

% Create a new bird's eye plot to plot the tracks
[bep,trkPlotterFcn] = helperSetupBEP(egoVehicle,rdr);

% Run simulation
restart(scenario);
scenario.StopTime = 7.5;
while advance(scenario)
 time = scenario.SimulationTime;
 tposes = targetPoses(egoVehicle);

 % Generate tracks
 [trks,~,config] = rdr(tposes,time);

 % Filter out tracks corresponding to static objects (e.g. barrier)
 dyntrks = helperKeepDynamicObjects(trks, egoVehicle, rdr);

 % Visualize dynamic tracks
 helperPlotScenario(bep,egoVehicle);
 trkPlotterFcn(dyntrks,config);
end
title('Simple Multipath Environment');

1 Featured Examples

1-50

The preceding figure shows the confirmed track positions using square markers. The tracks
corresponding to static objects (i.e barrier) are not plotted. Notice that there are multiple tracks
associated with the lead car. The tracks that overlay the lead car correspond to the true detection and
the first 2-bounce ghost. The tracks that lie off of the road on the other side of the guardrail
correspond to the second 2-bounce and 3-bounce ghosts.

The track velocities are indicated by the length and direction of the vectors pointing away from the
track position (these are small because they are relative to the ego vehicle). Ghost detections may
fool a tracker because they have kinematics like the kinematics of the true targets. These ghost
tracks can be problematic, as they add an additional processing load to the tracker and will possibly
confuse control decisions using the target tracks.

Model IQ Signals

In the single- and multi-bounce simulations performed above, you used statistical radar models to
generate detections and tracks. Now, use the radarTransceiver to generate time-domain IQ
signals. While radarTransceiver has other construction options, the radarDataGenerator
conveniently has an option to return a transceiver object that's been automatically configured so that
its performance characteristics are as close as possible to that of the radarDataGenerator.

Because the transceiver will not be performing any detection or estimation, set the angle resolution
of the radar equal to its FoV. Also set the detection probability to 0.9 so the transceiver uses a
realistic transmit power and noise figure.

% Reset radarDataGenerator and get the transceiver
release(rdr);

 Simulate Radar Ghosts due to Multipath Return

1-51

rdr.AzimuthResolution = rdr.FieldOfView(1);
rdr.DetectionProbability = 0.9;
transceiver = radarTransceiver(rdr);

Use the NumRepetitions property to specify how many pulses to collect per call to the transceiver.

% Total number of pulses to collect
numPulses = 128;

% Number of pulses per collection
transceiver.NumRepetitions = numPulses;

The helper function helperIncludeSignatures will add signature information to the poses struct,
which tells the transceiver the RCS of each target. helperGetPathsFromPoses will generate
information on each propagation path in the environment, including those involving multiple bounces.
The transceiver will use this to compute our multipath return.

restart(scenario); % restart the scenario

tgtPoses = targetPoses(egoVehicle); % Get target poses in ego vehicle's reference frame
tgtPoses = helperIncludeSignatures(tgtPoses,scenario);

% Get propagation path information
paths = helperGetPathsFromPoses(tgtPoses,scenario,rdr,lambda);

Now, collect a single coherent processing interval (CPI) of data, form the RDM, and plot. The
transceiver simply takes the paths struct from above and the current simulation time as input, and
returns IQ data formatted as range-by-pulse, commonly referred to as the phase history (PH).

time = scenario.SimulationTime; % Current simulation time
rx = transceiver(paths,time); % Get IQ data from transceiver for real and ghost targets

% Match filter the received signal
matchingcoeff = getMatchedFilter(transceiver.Waveform);
matchedfilter = phased.MatchedFilter('Coefficients',matchingcoeff);
matchingdelay = size(matchingcoeff,1)-1;
mfiltOut = matchedfilter(rx);
mfiltOut = buffer(mfiltOut(matchingdelay+1:end),size(mfiltOut,1));

Use a DC-centered range-Doppler map (RDM), and a range swath that extends up to our max range,
with one sample per resolution cell.

df = prf / numPulses; % Doppler filter spacing
dopAx = (-prf/2:df:prf/2-df).'; % Doppler axis
rngAx = (rangeRes:rangeRes:rangeMax).'; % Range axis

% Select only the range gates up to our max range
PH = mfiltOut(1:numel(rngAx),:);

% Form DC-centered RDM
RDM = fftshift(fft(PH,[],2),2);

% Plot RDM and close-up of target vehicle
helperPlotRDM(RDM,rngAx,dopAx,scenario.SimulationTime);

1 Featured Examples

1-52

The plot above shows the full RDM along with a close-up of the vehicle return. The strip of return at
about 12 kHz Doppler is from the guardrails on the side of the road. The target vehicle is visible
around 30 meters in range, and at a slightly negative Doppler since it is moving ahead faster than the
ego vehicle. The other two strips of return come from multipath reflections between the guardrails
and the target vehicle.

Below is a recording of about 60 frames of data at a higher resolution, and starting at about 3
seconds, along with the bird's-eye plot from earlier. This recording only shows single-bounce
reflections from the guardrails. Multipath return from the target vehicle begins as it starts to change
lanes and its distance to the guardrails decreases. We see the ghost target appear at a larger range
and Doppler than the real target, then slowly they converge as the real vehicle stabilizes in the center
of the road.

% Restore random state
rng(rndState);

 Simulate Radar Ghosts due to Multipath Return

1-53

Summary

In this example, you learned how ghost target detections arise from multiple reflections that can
occur between the radar and a target. An automotive radar scenario was used to highlight a common
case where ghost targets are generated by a guardrail in the field of view of the radar. As a result,
there are 4 unique bounce paths which can produce these ghost detections. The kinematics of the
ghost target detections are like the true target's detections, and as a result, these ghost targets can
create ghost tracks which can add additional processing load to a tracker and may confuse control
algorithms using these tracks. The radarTransceiver can be used to generate higher-fidelity IQ
data that is appropriate as input to detection and tracking algorithms.

Supporting Functions

helperKeepDynamicObjects

function dyntrks = helperKeepDynamicObjects(trks,egoVehicle,rdr)
% Filter out tracks corresponding to static objects (e.g. guardrail)
%
% This is a helper function and may be removed or modified in a future
% release.

dyntrks = trks;
if ~isempty(trks)
 vel = cell2mat(arrayfun(@(t)t.State(2:2:end),trks(:)','UniformOutput',false));
 isStatic = (-vel(1,:) > egoVehicle.Velocity(1)-rdr.RangeRateResolution) & (-vel(1,:) < egoVehicle.Velocity(1)+rdr.RangeRateResolution);
 dyntrks = trks(~isStatic);
end
end

helperIncludeSignatures

function tgtPoses = helperIncludeSignatures(tgtPoses,scenario)
% Include signature information in the target poses struct for use by
% radarTransceiver
%
% This is a helper function and may be removed or modified in a future
% release.

prof = scenario.actorProfiles;
id0 = [prof.ActorID];
id = [tgtPoses.ActorID];

for ind = 1:numel(tgtPoses)
 I = id0 == id(ind);
 tgtPoses(ind).Signatures = {rcsSignature("Azimuth",prof(I).RCSAzimuthAngles,"Elevation",...
 prof(I).RCSElevationAngles,"Pattern",prof(I).RCSPattern)};
end

end

helperPlotRDM

function helperPlotRDM(RDM,rngAx,dopAx,time)
% Plot the RDM and a close-up
%
% This is a helper function and may be removed or modified in a future
% release.

1 Featured Examples

1-54

figure;
set(gcf,'Position',get(gcf,'Position')+[0 0 560 0]);

subplot(1,2,1);
imagesc(dopAx/1e3,rngAx,20*log10(abs(RDM)));
colorbar;
cx = caxis;
caxis([cx(2)-60 cx(2)]);
xlabel('Doppler (kHz)');
ylabel('Range (m)');
set(gca,'ydir','normal');
title(sprintf('RDM at T = %.2f s',time));

subplot(1,2,2);
rIdx = rngAx >= 22 & rngAx <= 38;
dIdx = dopAx >= -5e3 & dopAx <= 0;
imagesc(dopAx(dIdx)/1e3,rngAx(rIdx),20*log10(abs(RDM(rIdx,dIdx))));
colorbar;
cx = caxis;
caxis([cx(2)-60 cx(2)]);
xlabel('Doppler (kHz)');
ylabel('Range (m)');
set(gca,'ydir','normal');
title('Vehicle Return');

end

 Simulate Radar Ghosts due to Multipath Return

1-55

Highway Vehicle Tracking with Multipath Radar Reflections
This example demonstrates the challenges associated with tracking vehicles on a highway in the
presence of multipath radar reflections. It also shows a ghost filtering approach used with an
extended object tracker to simultaneously filter ghost detections and track objects.

Introduction

Automotive radar sensors are robust against adverse environment conditions encountered during
driving, such as fog, snow, rain and strong sunlight. Automotive radar sensors have this advantage
because they operate at substantially large wavelengths compared to visible-wavelength sensors,
such as lidar and camera. As a side effect of using large wavelengths, surfaces around the radar
sensor act like mirrors and produce undesired detections due to multipath propagation. These
detections are often referred to as ghost detections because they seem to originate from regions
where no target exists. This example shows you the impact of these multipath reflections on
designing and configuring an object tracking strategy using radar detections. For more details
regarding multipath phenomenon and simulation of ghost detections, refer to the “Simulate Radar
Ghosts due to Multipath Return” on page 1-44 example.

In this example, you simulate the multipath detections from radar sensors in an urban highway
driving scenario. The highway is simulated with a barrier on both sides of the road. The scenario
consists of an ego vehicle and four other vehicles driving on the highway. The ego vehicle is equipped
with four radar sensors that providing 360-degree coverage. This image shows the configuration of
the radar sensors and detections from one scan of the sensors. The red regions represent the field of
view of the radar sensors and the black dots represent the detections.

1 Featured Examples

1-56

The radar sensors report detections from the vehicles and from the barriers that are on both sides of
the highway. Also, the radars report detections, which do not seem to originate from any real object
in the scenario. These are ghost detections due to multipath propagation of radar signals. Object
trackers assume all detections originate from real objects or uniformly distributed random clutter in
the field of view. Contrary to this assumption, the ghost detections are typically more persistent than
clutter and behave like detections from real targets. Due to this reason, an object tracking algorithm
is very likely to generate false tracks from these detections. It is important to filter out these
detections before processing the radar scan with a tracker.

 Highway Vehicle Tracking with Multipath Radar Reflections

1-57

Generate Sensor Data

The scenario used in this example is created using the drivingScenario. You use the
radarDataGenerator System object™ to simulate radar returns from a direct path and from
reflections in the scenario. The HasGhosts property of the sensor is specified as true to simulate
multipath reflections. The creation of the scenario and the sensor models is wrapped in the helper
function, helperCreateMultipathDrivingScenario, which is attached with this example. The
data set obtained by sensor simulation is recorded in a MAT file that contains returns from the radar
and the corresponding sensor configurations. To record the data for a different scenario or sensor
configuration, you can use the following command:

% Command to record data.
helperRecordData(scenario, egoVehicle, sensors, fName);

% Create the scenario
[scenario, egoVehicle, sensors] = helperCreateMultipathDrivingScenario;

% Load the recorded data
load('MultiPathRadarScenarioRecording.mat','detectionLog','configurationLog');

Radar Processing Chain: Radar Detections to Track List

In this section, you set up an integrated algorithm to simultaneously filter radar detections and track
extended objects. The block diagram illustrates the radar processing chain used in this example.

Next, you learn about each of these steps and the corresponding helper functions.

Doppler analysis

The radar sensors report the measured relative radial velocity of the reflected signals. In this step,
you utilize the measured radial velocity of the detections to determine if the target is static or
dynamic [1]. In the previous radar scan, a large percentage of the radar detections originate from the
static environment around the ego vehicle. Therefore, classifying each detection as static or dynamic
greatly helps to improve the understanding of the scene. You use the helper function,
helperClassifyStaticDynamic, to classify each detection as static or dynamic.

Static reflectors

The static environment is also typically responsible for a large percentage of the ghost reflections
reported by the radar sensors. After segmenting the data set and finding static detections, you

1 Featured Examples

1-58

process them to find 2-D line segments in the coordinate frame of the ego vehicle. First, you use the
DBSCAN algorithm to cluster the static detections into different clusters around the ego vehicle.
Second, you fit a 2-D line segment on each cluster. These fitted line segments define possible
reflection surfaces for signals propagating back to the radar. You use the helper function
helperFindStaticReflectors to find these 2-D line segments from static detections.

Occlusion analysis

Reflection from surfaces produce detections from the radar sensor that seem to originate behind the
reflector. After segmenting the dynamic detections from the radar, you use simple occlusion analysis
to determine if the radar detection is occluded behind a possible reflector. Because signals can be
reflected by static or dynamic objects, you perform occlusion analysis in two steps. First, dynamic
detections are checked against occlusion with the 2-D line segments representing the static
reflectors. You use the helper function helperClassifyGhostsUsingReflectors to classify if the
detection is occluded by a static reflector. Second, the algorithm uses information about predicted
tracks from an extended tracking algorithm to check for occlusion against dynamic objects in the
scene. The algorithm uses only confirmed tracks from the tracker to prevent overfiltering of the radar
detections in the presence of tentative or false tracks. You use the helper function
helperClassifyGhostsUsingTracks to classify if the detection is occluded by a dynamic object.

This entire algorithm for processing radar detections and classifying them is then wrapped into a
larger helper function, helperClassifyRadarDetections, which classifies and segments the
detection list into four main categories:

1 Target detections - These detections are classified to originate from real dynamic targets in the
scene.

2 Environment detections - These detections are classified to originate from the static
environment.

3 Ghost (Static) - These detections are classified to originate from dynamic targets but reflected via
the static environment.

4 Ghost (Dynamic) - These detections are classified to originate from dynamic targets but reflected
via other dynamic objects.

Setup GGIW-PHD Extended Object Tracker

The target detections are processed with an extended object tracker. In this example, you use a
Gamma Gaussian Inverse Wishart Probability Hypothesis density (GGIW-PHD) extended object
tracker. The GGIW-PHD tracker models the target with an elliptical shape and the measurement
model assumes that the detections are uniformly distributed inside the extent of the target. This
model allows a target to accept 2-bounce ghost detections, which have a higher probability of being
misclassified as a real target. These 2-bounce ghost detections also report a Doppler measurement
that is inconsistent with the actual motion of the target. When these ghost detections and real target
detections from the same object are estimated to belong to the same partition of detections, the
incorrect Doppler information can potentially cause the track estimate to diverge.

To reduce this problem, the tracker processes the range-rate measurements with higher
measurement noise variance to account for this imperfection in the target measurement model. The
tracker also uses a combination of a high assignment threshold and low merging threshold. A high
assignment threshold allows the tracker to reduce the generation of new components from ghost
targets detections, which are misclassified as target detections. A low merging threshold enables the
tracker to discard corrected components (hypothesis) of a track, which might have diverged due to
correction with ghost detections.

 Highway Vehicle Tracking with Multipath Radar Reflections

1-59

You set up the tracker using the trackerPHD System object™. For more details about extended
object trackers, refer to the “Extended Object Tracking of Highway Vehicles with Radar and Camera”
(Automated Driving Toolbox) example.

% Configuration of the sensors from the recording to set up the tracker
[~, sensorConfigurations] = helperAssembleData(detectionLog{1},configurationLog{1});

% Configure the tracker to use the GGIW-PHD filter with constant turn-rate motion model
for i = 1:numel(sensorConfigurations)
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitGGIWFilter;
 sensorConfigurations{i}.SensorTransformFcn = @ctmeas;
end

% Create the tracker using trackerPHD with Name-value pairs
tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',@(x)helperMultipathExamplePartitionFcn(x,2,5),...
 'AssignmentThreshold',450,...
 'ExtractionThreshold',0.8,...
 'ConfirmationThreshold',0.98,...
 'MergingThreshold',25,...
 'DeletionThreshold',1e-3,...
 'BirthRate',1e-2,...
 'HasSensorConfigurationsInput',true...
);

Run Scenario and Track Objects

Next, you advance the scenario, use the recorded measurements from the sensors, and process them
using the previously described algorithm. You analyze the performance of the tracking algorithm by
using the Generalized Optimal Subpattern Assignment (GOSPA) metric. You also analyze the
performance of the classification filtering algorithm by estimating a confusion matrix between true
and estimated classification of radar detections. You obtain the true classification information about
the detections using the helperTrueClassificationInfo helper function.

% Create trackGOSPAMetric object to calculate GOSPA metric
gospaMetric = trackGOSPAMetric('Distance','custom', ...
 'DistanceFcn',@helperGOSPADistance, ...
 'CutoffDistance',35);

% Create display for visualization of results
display = helperMultiPathTrackingDisplay;

% Predicted track list for ghost filtering
predictedTracks = objectTrack.empty(0,1);

% Confusion matrix
confMat = zeros(5,5,numel(detectionLog));

% GOSPA metric
gospa = zeros(4,numel(detectionLog));

% Ground truth
groundTruth = scenario.Actors(2:end);

for i = 1:numel(detectionLog)
 % Advance scene for visualization of ground truth
 advance(scenario);

1 Featured Examples

1-60

 % Current time
 time = scenario.SimulationTime;

 % Detections and sensor configurations
 [detections, configurations] = helperAssembleData(detectionLog{i},configurationLog{i});

 % Predict confirmed tracks to current time for classifying ghosts
 if isLocked(tracker)
 predictedTracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Classify radar detections as targets, ghosts, or static environment
 [targets, ghostStatic, ghostDynamic, static, reflectors, classificationInfo] = helperClassifyRadarDetections(detections, egoVehicle, predictedTracks);

 % Pass detections from target and sensor configurations to the tracker
 confirmedTracks = tracker(targets, configurations, time);

 % Visualize the results
 display(egoVehicle, sensors, targets, confirmedTracks, ghostStatic, ghostDynamic, static, reflectors);

 % Calculate GOSPA metric
 [gospa(1, i),~,~,gospa(2,i),gospa(3,i),gospa(4,i)] = gospaMetric(confirmedTracks, groundTruth);

 % Get true classification information and generate confusion matrix
 trueClassificationInfo = helperTrueClassificationInfo(detections);
 confMat(:,:,i) = helperConfusionMatrix(trueClassificationInfo, classificationInfo);
end

Results

Animation and snapshot analysis

The animation that follows shows the result of the radar data processing chain. The black ellipses
around vehicles represent estimated tracks. The radar detections are visualized with four different
colors depending on their predicted classification from the algorithm. The black dots in the
visualization represent static radar target detections. Notice that these detections are overlapped by
black lines, which represent the static reflectors found using the DBSCAN algorithm. The maroon
markers represent the detections processed by the extended object tracker, while the green and blue
markers represent radar detections classified as reflections via static and dynamic objects
respectively. Notice that the tracker is able to maintain a track on all four vehicles during the
scenario and no false tracks were confirmed by the tracker.

 Highway Vehicle Tracking with Multipath Radar Reflections

1-61

Next, you analyze the performance of the algorithm using different snapshots captured during the
simulation. The snapshot below is captured at time = 3 seconds and shows the situation in front of
the ego vehicle. At this time, the ego vehicle is approaching the slow-moving truck, and the left radar
sensor observes reflections of these objects via the left barrier. These detections appear as mirrored
detections of these objects in the barrier. Notice that the black line estimated as a 2-D reflector is in
the line of sight of these detections. Therefore, the algorithm is able to correctly classify these
detections as ghost targets reflected off static objects.

f = showSnaps(display,1:2,1);
if ~isempty(f)
 ax = findall(f,'Type','Axes','Tag','birdsEyePlotAxes');
 ax.XLim = [-10 30];
 ax.YLim = [-10 20];
end

1 Featured Examples

1-62

Next, analyze the performance of the algorithm using the snapshot captured at time = 4.5 seconds.
At this time, the ego vehicle is even closer to the truck and the truck is approximately halfway
between the green vehicle and the ego vehicle. During these situations, the left side of the truck acts
as a strong reflector and generates ghost detections. The detections on the right half of the green
vehicle are from 2-bounce detections off of the green vehicle as the signal travels back to the sensor
after reflecting off the truck. The algorithm is able to classify these detections as ghost detections
generated from dynamic object reflections because the estimated extent of the truck is in the direct
line of sight of these detections.

f = showSnaps(display,1:2,2);
if ~isempty(f)
 ax = findall(f,'Type','Axes','Tag','birdsEyePlotAxes');
 ax.XLim = [-10 30];
 ax.YLim = [-10 20];
end

 Highway Vehicle Tracking with Multipath Radar Reflections

1-63

Also notice the passing vehicle denoted by the yellow car on the left of the ego vehicle. The
detections, which seem to originate from the nonvisible surface of the yellow vehicle, are 2-bounce
detections of the barriers, reflected via the front face of the passing vehicle. These ghost detections
are misclassified as target detections because they seem to originate from inside the estimated extent
of the vehicle. At the same location, the detections that lie beyond the barrier are also 2-bounce
detections of the front face when the signal is reflected from the barrier and returns to the sensor.
Since these detections lie beyond the extent of the track and the track is in the direct line of sight,
they are classified as ghost detections from reflections off dynamic objects.

Performance analysis

Quantitatively assess the performance of the tracking algorithm by using the GOSPA metric and its
associated components. A lower value of the metric denotes better tracking performance. In the
figure below, the "Missed-target" component of the metric remains zero after a few steps in the
beginning, representing establishment delay of the tracker. This component shows that no targets
were missed by the tracker. Also, the "False-tracks" component of the metric remains zero
representing that no false tracks were confirmed by the tracker.

1 Featured Examples

1-64

figure;
plot(gospa','LineWidth',2);
legend('GOSPA','Localization GOSPA','Missed-target GOSPA','False-tracks GOSPA');

Similar to the tracking algorithm, you also quantitatively analyze the performance of the radar
detection classification algorithm by using a confusion matrix [2]. The rows shown in the table denote
the true classification information of the radar detections and the columns represent the predicted
classification information. For example, the second element of the first row defines the percentage of
target detections predicted as ghosts from static object reflections.

More than 94% of the target detections are classified correctly. However, a small percentage of the
target detections are misclassified as ghosts from dynamic reflections. Also, approximately 9% of
ghosts from static object reflections and 35% of ghosts from dynamic object reflections are
misclassified as targets and sent to the tracker for processing. A common situation when this occurs
in this example is when the detections from 2-bounce reflections lie inside the estimated extent of the
vehicle. Further, the classification algorithm used in this example is not designed to find false alarms
or clutter in the scene. Therefore, the fifth column of the confusion matrix is zero. Due to spatial
distribution of the false alarms inside the field of view, the majority of false alarm detections are
either classified as reflections from static objects or dynamic objects.

% Accumulate confusion matrix over all steps
confusionMatrix = sum(confMat,3);
numElements = sum(confusionMatrix,2);
numElemsTable = array2table(numElements,'VariableNames',{'Number of Detections'},'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'});
disp('True Information');disp(numElemsTable);

 Highway Vehicle Tracking with Multipath Radar Reflections

1-65

True Information
 Number of Detections

 Targets 1982
 Ghost (S) 3818
 Ghost (D) 345
 Environment 25358
 Clutter 150

% Calculate percentages
percentMatrix = confusionMatrix./numElements*100;

percentMatrixTable = array2table(round(percentMatrix,2),'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 "VariableNames",{'Targets','Ghost (S)','Ghost (D)', 'Environment','Clutter'});

disp('True vs Predicted Confusion Matrix (%)');disp(percentMatrixTable);

True vs Predicted Confusion Matrix (%)
 Targets Ghost (S) Ghost (D) Environment Clutter
 _______ _________ _________ ___________ _______

 Targets 94.3 1.06 4.19 0.45 0
 Ghost (S) 8.77 74.28 16.53 0.42 0
 Ghost (D) 38.55 0 61.45 0 0
 Environment 0.85 3.04 2.71 93.4 0
 Clutter 16.67 62 20 1.33 0

Summary

In this example, you simulated radar detections due to multipath propagation in an urban highway
driving scenario. You configured a data processing algorithm to simultaneously filter ghost detections
and track vehicles on the highway. You also analyzed the performance of the tracking algorithm and
the classification algorithm using the GOSPA metric and confusion matrix.

References

[1] Prophet, Robert, et al. "Instantaneous Ghost Detection Identification in Automotive Scenarios."
2019 IEEE Radar Conference (RadarConf). IEEE, 2019.

[2] Kraus, Florian, et al. "Using machine learning to detect ghost images in automotive radar." 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

1 Featured Examples

1-66

Track-to-Track Fusion for Automotive Safety Applications
This example shows how to fuse tracks from two vehicles to provide a more comprehensive estimate
of the environment that can be seen by each vehicle. The example demonstrates the use of a track-
level fuser and the object track data format. In this example, you use the driving scenario and vision
detection generator from Automated Driving Toolbox™, the radar data generator from the Radar
Toolbox™, and the tracking and track fusion models from Sensor Fusion and Tracking Toolbox™.

Motivation

Automotive safety applications rely on the fusion of data from different sensor systems mounted on
the vehicle. Individual vehicles fuse sensor detections by using either a centralized tracker or by
taking a more decentralized approach and fusing tracks produced by individual sensors. In addition
to intravehicle data fusion, the fusion of data from multiple vehicles provides added benefits, which
include better coverage, situational awareness, and safety[1]. This intervehicle sensor fusion
approach takes advantage of the variety of sensors and provides better coverage to each vehicle,
because it uses data updated by sensors on other vehicles in the area. Governments and vehicle
manufacturers have long recognized the need to share information between vehicles in order to
increase automotive safety. For example, V2X protocols and cellular communication links are being
developed.

While sensor fusion across multiple vehicles is beneficial, most vehicles are required to meet certain
safety requirements even if only internal sensors are available. Therefore, the vehicle is likely to be
equipped with a tracker, a track fuser, or both. These tracking algorithms provide situational
awareness at the single vehicle level. As a result, the assumption made in this example is that
vehicles share situational awareness by broadcasting tracks and performing track-to-track fusion.

This example demonstrates the benefit of fusing tracks from two vehicles to enhance situational
awareness and safety. This example does not simulate the communications systems. Instead, the
example assumes that a communications system provides the bandwidth required to transmit tracks
between the two vehicles.

Track-to-Track Architecture

The following block diagram depicts the main functions in the two vehicles, where:

• Vehicle 1 has two sensors, each providing detections to a local vehicle tracker. The tracker uses
the detections from the local sensors to track objects and outputs these local tracks to the vehicle
track fuser.

• Vehicle 2 has a single sensor, which is a tracking radar. The tracking radar outputs tracks and
serves as the local tracker for vehicle 2. The tracks from the tracking radar are inputs to the
vehicle track fuser on vehicle 2.

• The track fuser on each vehicle fuses the local vehicle tracks with the tracks received from the
other vehicle's track fuser. After each update, the track fuser on each vehicle broadcasts its fused
tracks, which feed into the next update of the track fuser on the other vehicle.

 Track-to-Track Fusion for Automotive Safety Applications

1-67

In this example, you use a trackerJPDA (Sensor Fusion and Tracking Toolbox) object to define the
vehicle 1 tracker.

% Create the tracker for vehicle 1
v1Tracker = trackerJPDA('TrackerIndex',1, 'DeletionThreshold', [4 4], 'AssignmentThreshold', [100 inf]); % Vehicle 1 tracker
posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0];

In this architecture, the fused tracks from one vehicle update the fused tracks on the other vehicle.
These fused tracks are then broadcast back to the first vehicle. To avoid rumor propagation, be
careful how tracks from another vehicle update the track fuser.

Consider the following rumor propagation example: at some update step, vehicle 1 tracks an object
using its internal sensors. Vehicle 1 then fuses the object track and transmits it to vehicle 2, which
now fuses the track with its own tracks and becomes aware of the object. Up to this point, this is
exactly the goal of track-to-track fusion: to enhance the situational awareness of vehicle 2 with
information from vehicle 1. Since vehicle 2 now knows about the object, it starts broadcasting the
track as well, perhaps for the benefit of another vehicle (not shown in the example).

However, vehicle 1 now receives track information from vehicle 2 about the object that only vehicle 1
actually tracks. So, the track fuser on vehicle 1 must be aware that the tracks of this object it gets
from vehicle 2 do not actually contain any new information updated by an independent source. To
make the distinction between tracks that contain new information and tracks that just repeat
information, you must define vehicle 2 as an external source to the track fuser on vehicle 1. Similarly,
vehicle 1 must be defined as an external source to the track fuser on vehicle 2. Furthermore, you
need to define only tracks that are updated by a track fuser based on information from an internal
source as self-reported. By doing so, the track fuser in each vehicle ignores updates from tracks that
bounce back and forth between the track fusers without any new information in them.

The local tracker of each vehicle tracks objects relative to the vehicle reference frame, called the ego
frame. The track-to-track fusion is done at the scenario frame, which is the global-level frame. The
helper egoToScenario function transforms tracks from ego frame to the scenario frame. Similarly,

1 Featured Examples

1-68

the function scenarioToEgo transforms tracks from the scenario frame to any of the ego frames.
Both transformations rely on the StateParameters property of the objectTrack (Sensor Fusion
and Tracking Toolbox) objects. When the trackFuser object calculates the distance of a central
track in the scenario frame to a local track in any frame, it uses the StateParameters of the local
track to perform the coordinate transformation.

To achieve the previously described trackFuser definitions, define the following sources as a
fuserSourceConfiguration (Sensor Fusion and Tracking Toolbox) object.

% Define sources for each vehicle
v1TrackerConfiguration = fuserSourceConfiguration('SourceIndex',1,'IsInternalSource',true, ... % v1Tracker is internal to v1Fuser
 "CentralToLocalTransformFcn", @scenarioToEgo, 'LocalToCentralTransformFcn', @egoToScenario); % Coordinate transformation
v2FuserConfiguration = fuserSourceConfiguration('SourceIndex',4,'IsInternalSource',false); % v2Fuser is external to v2Fuser
v1Sources = {v1TrackerConfiguration; v2FuserConfiguration};
v2TrackerConfiguration = fuserSourceConfiguration('SourceIndex',2,'IsInternalSource',true, ... % v2Tracker is internal to v2Fuser
 "CentralToLocalTransformFcn", @scenarioToEgo, 'LocalToCentralTransformFcn', @egoToScenario); % Coordinate transformation
v1FuserConfiguration = fuserSourceConfiguration('SourceIndex',3,'IsInternalSource',false); % v1Fuser is external to v2Fuser
v2Sources = {v2TrackerConfiguration; v1FuserConfiguration};

You can now define each vehicle track fuser as a trackFuser (Sensor Fusion and Tracking Toolbox)
object.

stateParams = struct('Frame','Rectangular','Position',[0 0 0],'Velocity',[0 0 0]);
v1Fuser = trackFuser('FuserIndex',3,...
 'AssignmentThreshold', [100 inf], ...
 'MaxNumSources',2,'SourceConfigurations',v1Sources,...
 'StateFusion','Intersection','DeletionThreshold',[3 3],...
 'StateParameters',stateParams);
v2Fuser = trackFuser('FuserIndex',4,...
 'AssignmentThreshold', [100 inf], ...
 'MaxNumSources',2,'SourceConfigurations',v2Sources,'StateFusion',...
 'Intersection','DeletionThreshold',[3 3],...
 'StateParameters',stateParams);

% Initialize the following variables
fusedTracks1 = objectTrack.empty(0,1);
fusedTracks2 = objectTrack.empty(0,1);
wasFuser1Updated = false;
wasFuser2Updated = false;

Define Scenario

The following scenario shows two vehicles driving down a street. Vehicle 1 is the lead vehicle and is
equipped with two forward-looking sensors: a short-range radar sensor and a vision sensor. Vehicle 2,
driving 10 meters behind vehicle 1, is equipped with a long-range radar. The right side of the street
contains parked vehicles. A pedestrian stands between the vehicles. This pedestrian is shown as a dot
at about X = 60 meters.

Due to the short distance between vehicle 2 and vehicle 1, most of the vehicle 2 radar sensor
coverage is occluded by vehicle 1. As a result, most of the tracks that the track fuser on vehicle 2
maintains are first initialized by tracks broadcast from vehicle 1.

% Create the drivingScenario object and the two vehicles
[scenario, vehicle1, vehicle2] = createDrivingScenario;

% Create all the sensors
[sensors, numSensors, attachedVehicle] = createSensors(scenario);

 Track-to-Track Fusion for Automotive Safety Applications

1-69

% Create display
[f,plotters] = createV2VDisplay(scenario, sensors, attachedVehicle);

The following chase plot is seen from the point of view of the second vehicle. An arrow indicates the
position of the pedestrian that is almost entirely occluded by the parked vehicles and the first vehicle.

% Define each vehicle as a combination of an actor, sensors, a tracker, and plotters
v1 = struct('Actor', {vehicle1}, 'Sensors', {sensors(attachedVehicle==1)}, 'Tracker', {v1Tracker}, 'DetPlotter', {plotters.veh1DetPlotter}, 'TrkPlotter', {plotters.veh1TrkPlotter});
v2 = struct('Actor', {vehicle2}, 'Sensors', {sensors(attachedVehicle==2)}, 'Tracker', {{}}, 'DetPlotter', {{}}, 'TrkPlotter', {plotters.veh2TrkPlotter}); % No detections or tracker on Vehicle 2

Run Simulation

The following code runs the simulation.

running = true;

% For repeatable results, set the random number seed
s = rng;
rng(2019)
snaptimes = [0.5, 2.8, 4.4, 6.3, inf];
snaps = cell(numel(snaptimes,1));
i = 1;
f.Visible = 'on';
while running && ishghandle(f)
 time = scenario.SimulationTime;

 % Detect and track at the vehicle level
 [tracks1,wasTracker1Updated] = detectAndTrack(v1,time,posSelector);
 [tracks2,wasTracker2Updated] = detectAndTrack(v2,time,posSelector);

 % Keep the tracks from the previous fuser update
 oldFusedTracks1 = fusedTracks1;
 oldFusedTracks2 = fusedTracks2;

1 Featured Examples

1-70

 % Update the fusers
 if wasTracker1Updated || wasFuser2Updated
 tracksToFuse1 = [tracks1;oldFusedTracks2];
 if isLocked(v1Fuser) || ~isempty(tracksToFuse1)
 [fusedTracks1,~,~,info1] = v1Fuser(tracksToFuse1,time);
 wasFuser1Updated = true;
 pos = getTrackPositions(fusedTracks1,posSelector);
 ids = string([fusedTracks1.TrackID]');
 plotTrack(plotters.veh1FusePlotter,pos,ids);
 else
 wasFuser1Updated = false;
 fusedTracks1 = objectTrack.empty(0,1);
 end
 else
 wasFuser1Updated = false;
 fusedTracks1 = objectTrack.empty(0,1);
 end
 if wasTracker2Updated || wasFuser1Updated
 tracksToFuse2 = [tracks2;oldFusedTracks1];
 if isLocked(v2Fuser) || ~isempty(tracksToFuse2)
 [fusedTracks2,~,~,info2] = v2Fuser(tracksToFuse2,time);
 wasFuser2Updated = true;
 pos = getTrackPositions(fusedTracks2,posSelector);
 ids = string([fusedTracks2.TrackID]');
 plotTrack(plotters.veh2FusePlotter,pos,ids);
 else
 wasFuser2Updated = false;
 fusedTracks2 = objectTrack.empty(0,1);
 end
 else
 wasFuser2Updated = false;
 fusedTracks2 = objectTrack.empty(0,1);
 end

 % Update the display
 updateV2VDisplay(plotters, scenario, sensors, attachedVehicle)

 % Advance the scenario one time-step and exit the loop if the scenario is complete
 running = advance(scenario);

 % Snap a shot at required times
 if time >= snaptimes(i)
 snaps{i} = getframe(f);
 i = i + 1;
 end
end

 Track-to-Track Fusion for Automotive Safety Applications

1-71

The figure shows the scene and tracking results at the end of the scenario. Subsequent sections of
this example analyze the tracking results at key times.

Analyze Tracking at Beginning of Simulation

When the simulation begins, vehicle 1 detects the vehicles parked on the right side of the street.
Then, vehicle 1 tracker confirms the tracks associated with the parked vehicles and. At this time, the
only object detected and tracked by vehicle 2 tracker is vehicle 1, which is immediately in front of it.
Once the vehicle 1 track fuser confirms the tracks, it broadcasts them, and the vehicle 2 track fuser
fuses them. As a result, vehicle 2 becomes aware of the parked vehicles before it can detect them on
its own.

showsnap(snaps, 1)

1 Featured Examples

1-72

Analyze Tracking of Pedestrian at Side of Street

As the simulation continues, vehicle 2 is able to detect and track the vehicles parked at the side as
well and fuses them with the tracks coming from vehicle 1. Vehicle 2 is able to detect and track the
pedestrian about 4 seconds into the simulation, and vehicle 2 fuses the track associated with the
pedestrian around 4.4 seconds into the simulation (see snapshot 2). However, it takes vehicle 2 about
two seconds before it can detect and track the pedestrian by its own sensors (see snapshot 3). These
two seconds can make a huge impact on the safety of the pedestrian if that pedestrian started
crossing the street.

showsnap(snaps, 2)

 Track-to-Track Fusion for Automotive Safety Applications

1-73

showsnap(snaps, 3)

Avoiding Rumor Propagation

As the vehicles pass the objects, and these objects go out of their field of view, the fused tracks
associated with these objects are dropped by both trackers (see snapshot 4). Dropping the tracks
demonstrates that the fused tracks broadcast back and forth between the two vehicles are not used
to propagate rumors.

showsnap(snaps, 4)

1 Featured Examples

1-74

% Restart the driving scenario to return the actors to their initial positions.
restart(scenario);

% Release all the sensor objects so they can be used again.
for sensorIndex = 1:numSensors
 release(sensors{sensorIndex});
end

% Return the random seed to its previous value
rng(s)

Summary

In this example, you saw how track-to-track fusion can enhance the situational awareness and
increase the safety in automotive applications. You saw how to set up a trackFuser to perform
track-to-track fusion and how to define sources as either internal or external by using the
fuserSourceConfiguration object. By doing so, you avoid rumor propagation and keep only the
fused tracks that are really observed by each vehicle to be maintained.

References

[1] Bharanidhar Duraisamy, Tilo Schwartz, and Christian Wohler, "Track level fusion algorithms for
automotive safety applications", 2013 International Conference on Signal Processing, Image
Processing & Pattern Recognition, IEEE, 2013.

Supporting Functions

createDrivingScenario

Creates a driving scenario defined in the Driving Scenario Designer app.

function [scenario, egoVehicle, secondVehicle] = createDrivingScenario
% Construct a drivingScenario object.

 Track-to-Track Fusion for Automotive Safety Applications

1-75

scenario = drivingScenario('SampleTime', 0.1);

% Add all road segments
roadCenters = [50.8 0.5 0; 253.4 1.5 0];
roadWidth = 12;
road(scenario, roadCenters, roadWidth);

roadCenters = [100.7 -100.6 0; 100.7 103.7 0];
road(scenario, roadCenters);

roadCenters = [201.1 -99.2 0; 199.7 99.5 0];
road(scenario, roadCenters);

% Add the ego vehicle
egoVehicle = vehicle(scenario, 'ClassID', 1, 'Position', [65.1 -0.9 0], 'PlotColor', [0 0.7410 0.4470]);
waypoints = [71 -0.5 0; 148.7 -0.5 0];
speed = 12;
trajectory(egoVehicle, waypoints, speed);

% Add the second vehicle
secondVehicle = vehicle(scenario, 'ClassID', 1, 'Position', [55.1 -0.9 0]);
waypoints = [61 -0.5 0; 138.7 -0.5 0];
speed = 12;
trajectory(secondVehicle, waypoints, speed);

% Add the parked cars
vehicle(scenario, 'ClassID', 1, 'Position', [111.0 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [140.6 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [182.6 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [211.3 -4.1 0]);

% Add pedestrian
actor(scenario, 'ClassID', 4, 'Length', 0.5, 'Width', 0.5, ...
 'Height', 1.7, 'Position', [130.3 -2.7 0], 'RCSPattern', [-8 -8;-8 -8]);

% Add parked truck
vehicle(scenario, 'ClassID', 2, 'Length', 8.2, 'Width', 2.5, ...
 'Height', 3.5, 'Position', [117.5 -3.5 0]);
end

createSensors

Creates the sensors used in the scenario and lists their attachments to vehicles.

function [sensors, numSensors, attachedVehicle] = createSensors(scenario)
% createSensors Returns all sensor objects to generate detections
% Units used in createSensors and createDrivingScenario
% Distance/Position - meters
% Speed - meters/second
% Angles - degrees
% RCS Pattern - dBsm

% Assign into each sensor the physical and radar profiles for all actors
profiles = actorProfiles(scenario);

% Vehicle 1 radar reports clustered detections
sensors{1} = radarDataGenerator('No scanning', 'SensorIndex', 1, 'UpdateRate', 10, ...
 'MountingLocation', [3.7 0 0.2], 'RangeLimits', [0 50], 'FieldOfView', [60 5], ...

1 Featured Examples

1-76

 'RangeResolution', 2.5, 'AzimuthResolution', 4, ...
 'Profiles', profiles, 'HasOcclusion', true, 'HasFalseAlarms', false, ...
 'TargetReportFormat', 'Clustered detections');

% Vehicle 2 radar reports tracks
sensors{2} = radarDataGenerator('No scanning', 'SensorIndex', 2, 'UpdateRate', 10, ...
 'MountingLocation', [3.7 0 0.2], 'RangeLimits', [0 120], 'FieldOfView', [30 5], ...
 'RangeResolution', 2.5, 'AzimuthResolution', 4, ...
 'Profiles', profiles, 'HasOcclusion', true, 'HasFalseAlarms', false, ...
 'TargetReportFormat', 'Tracks', 'DeletionThreshold', [3 3]);

% Vehicle 1 vision sensor reports detections
sensors{3} = visionDetectionGenerator('SensorIndex', 3, ...
 'MaxRange', 100, 'SensorLocation', [1.9 0], 'DetectorOutput', 'Objects only', ...
 'ActorProfiles', profiles);
attachedVehicle = [1;2;1];
numSensors = numel(sensors);
end

scenarioToEgo

Performs coordinate transformation from scenario to ego coordinates.

trackInScenario has StateParameters defined to transform it from scenario coordinates to ego
coordinates.

The state uses the constant velocity model: [x;vx;y;vy;z;vz].

function trackInEgo = scenarioToEgo(trackInScenario)
egoPosInScenario = trackInScenario.StateParameters.OriginPosition;
egoVelInScenario = trackInScenario.StateParameters.OriginVelocity;
stateInScenario = trackInScenario.State;
stateShift = [egoPosInScenario(1);egoVelInScenario(1);egoPosInScenario(2);egoVelInScenario(2);egoPosInScenario(3);egoVelInScenario(3)];
stateInEgo = stateInScenario - stateShift;
trackInEgo = objectTrack('UpdateTime',trackInScenario.UpdateTime,'State',stateInEgo,'StateCovariance',trackInScenario.StateCovariance,'StateParameters',trackInScenario.StateParameters);
end

egoToScenario

Performs coordinate transformation from ego to scenario coordinates.

trackInEgo has StateParameters defined to transform it from ego coordinates to scenario coordinates.

The state uses the constant velocity model: [x;vx;y;vy;z;vz].

function trackInScenario = egoToScenario(trackInEgo)
egoPosInScenario = trackInEgo.StateParameters.OriginPosition;
egoVelInScenario = trackInEgo.StateParameters.OriginVelocity;
stateInScenario = trackInEgo.State;
stateShift = [egoPosInScenario(1);egoVelInScenario(1);egoPosInScenario(2);egoVelInScenario(2);egoPosInScenario(3);egoVelInScenario(3)];
stateInEgo = stateInScenario + stateShift;
trackInScenario = objectTrack('UpdateTime',trackInEgo.UpdateTime,'State',stateInEgo,'StateCovariance',trackInEgo.StateCovariance,'StateParameters',trackInEgo.StateParameters);
end

detectAndTrack

This function is used for collecting all the detections from the sensors in one vehicle and update the
tracker with them.

 Track-to-Track Fusion for Automotive Safety Applications

1-77

The agent is a structure that contains the actor information and the sensors, tracker, and the
necessary plotter to plot detections and vehicle tracks.

function [tracks,wasTrackerUpdated] = detectAndTrack(agent,time,posSelector)
% Create detections from the vehicle
poses = targetPoses(agent.Actor);
[detections,isValid] = vehicleDetections(agent.Actor.Position,agent.Sensors,poses,time,agent.DetPlotter);

% Update the tracker to get tracks from sensors that reported detections
if isValid
 agent.Tracker.StateParameters = struct(...
 'Frame','Rectangular', ...
 'OriginPosition', agent.Actor.Position, ...
 'OriginVelocity', agent.Actor.Velocity);
 tracks = agent.Tracker(detections,time);
 tracksInScenario = tracks;
 for i = 1:numel(tracks)
 tracksInScenario(i) = egoToScenario(tracks(i));
 end
 pos = getTrackPositions(tracksInScenario,posSelector);
 plotTrack(agent.TrkPlotter,pos)
 wasTrackerUpdated = true;
else
 tracks = objectTrack.empty(0,1);
 wasTrackerUpdated = false;
end

% Get additional tracks from tracking sensors
[sensorTracks,wasSensorTrackerUpdated] = vehicleTracks(agent.Actor,agent.Sensors,poses,time,agent.TrkPlotter);
tracks = vertcat(tracks,sensorTracks);
wasTrackerUpdated = wasTrackerUpdated || wasSensorTrackerUpdated;
end

vehicleDetections

Collects the detections from all the sensors attached to this vehicle that return detections.

function [objectDetections,isValid] = vehicleDetections(position, sensors, poses, time, plotter)
numSensors = numel(sensors);
objectDetections = {};
isValidTime = false(1, numSensors);

% Generate detections for each sensor
for sensorIndex = 1:numSensors
 sensor = sensors{sensorIndex};
 if isa(sensor, 'visionDetectionGenerator') || ~strcmpi(sensor.TargetReportFormat,'Tracks')
 [objectDets, ~, sensorConfig] = sensor(poses, time);
 if islogical(sensorConfig)
 isValidTime(sensorIndex) = sensorConfig;
 else
 isValidTime(sensorIndex) = sensorConfig.IsValidTime;
 end
 objectDets = cellfun(@(d) setAtt(d), objectDets, 'UniformOutput', false);
 numObjects = numel(objectDets);
 objectDetections = [objectDetections; objectDets(1:numObjects)]; %#ok<AGROW>
 end
end
isValid = any(isValidTime);

1 Featured Examples

1-78

% Plot detections
if numel(objectDetections)>0
 detPos = cellfun(@(d)d.Measurement(1:2), objectDetections, 'UniformOutput', false);
 detPos = cell2mat(detPos')' + position(1:2);
 plotDetection(plotter, detPos);
end
end

function d = setAtt(d)
% Set the attributes to be struct
d.ObjectAttributes = struct;
% Keep only the position measurement and remove velocity
if numel(d.Measurement)==6
 d.Measurement = d.Measurement(1:3);
 d.MeasurementNoise = d.MeasurementNoise(1:3,1:3);
 d.MeasurementParameters{1}.HasVelocity = false;
end
end

vehicleTracks

Collects all the tracks from sensors that report tracks on the vehicle.

function [tracks,wasTrackerUpdated] = vehicleTracks(actor, sensors, poses, time, plotter)
% Create detections from the vehicle
numSensors = numel(sensors);
tracks = objectTrack.empty;
isValidTime = false(1, numSensors);

% Generate detections for each sensor
for sensorIndex = 1:numSensors
 sensor = sensors{sensorIndex};
 if isa(sensor, 'radarDataGenerator') && strcmpi(sensor.TargetReportFormat,'Tracks')
 [sensorTracks, ~, sensorConfig] = sensor(poses, time);
 if islogical(sensorConfig)
 isValidTime(sensorIndex) = sensorConfig;
 else
 isValidTime(sensorIndex) = sensorConfig.IsValidTime;
 end
 numObjects = numel(sensorTracks);
 tracks = [tracks; sensorTracks(1:numObjects)]; %#ok<AGROW>
 end
end
wasTrackerUpdated = any(isValidTime);

if ~wasTrackerUpdated % No vehicle tracking sensor udpated
 return
end

% Add vehicle position and velocity to track state parameters
for i = 1:numel(tracks)
 tracks(i).StateParameters.OriginPosition = tracks(i).StateParameters.OriginPosition + actor.Position';
 tracks(i).StateParameters.OriginVelocity = tracks(i).StateParameters.OriginVelocity + actor.Velocity';
end

% Plot tracks
if numel(tracks)>0

 Track-to-Track Fusion for Automotive Safety Applications

1-79

 trPos = arrayfun(@(t)t.State([1,3]), tracks, 'UniformOutput', false);
 trPos = cell2mat(trPos')' + actor.Position(1:2);
 plotTrack(plotter, trPos);
end
end

1 Featured Examples

1-80

Track-to-Track Fusion for Automotive Safety Applications in
Simulink

This example shows how to perform track-to-track fusion in Simulink® with Sensor Fusion and
Tracking Toolbox™. In the context of autonomous driving, the example illustrates how to build a
decentralized tracking architecture using a track fuser block. In the example, each vehicle perform
tracking independently as well as fuse tracking information received from other vehicles. This
example closely follows the “Track-to-Track Fusion for Automotive Safety Applications” (Sensor
Fusion and Tracking Toolbox) MATLAB® example.

Introduction

Automotive safety applications largely rely on the situational awareness of the vehicle. A better
situational awareness provides the basis to a successful decision-making for different situations. To
achieve this, vehicles can benefit from intervehicle data fusion. This example illustrates the workflow
in Simulink for fusing data from two vehicles to enhance situational awareness of the vehicle.

Setup and Overview of the Model

Prior to running this example, the drivingScenario object was used to create the same scenario
defined in “Track-to-Track Fusion for Automotive Safety Applications” (Sensor Fusion and Tracking
Toolbox). The roads and actors from this scenario were then saved to the scenario object file
Scene.mat.

 Track-to-Track Fusion for Automotive Safety Applications in Simulink

1-81

Tracking and Fusion

In the Tracking and Fusion section of the model there are two subsystems which implements the
target tracking and fusion capabilities of Vehicle1 and Vehicle2 in this scenario.

Vehicle1

This subsystem includes the Scenario Reader (Automated Driving Toolbox) block that reads the actor
pose data from the saved file. The block converts the actor poses from the world coordinates of the
scenario into ego vehicle coordinates. The actor poses are streamed on a bus generated by the block.
The actor poses are used by the Sensor Simulation subsystem, which generates radar and vision
detections. These detections are then passed to the JPDA Tracker V1 block which processes the
detections to generate a list of tracks. The tracks are then passed into a Track Concatenation1
block, which concatenates these input tracks. The first input to the Track Concatenation1 block is
the local tracks from the JPDA tracker and the second input is the tracks received from the other
vehicle's track fuser. To transform local tracks to central tracks, the track fuser needs the parameter
information about the local tracks. However, this information is not available from the direct outputs
of the JPDA tracker. Therefore, a helper Update Pose block is used to supply these information by
reading the data from the v1Pose.mat file. The updated tracks are then broadcasted to T2TF
Tracker V1 block as an input. Finally, the trackFuser (Sensor Fusion and Tracking Toolbox) T2TF
Tracker V1 block fuses the local vehicle tracks with the tracks received from the other vehicle's
track fuser. After each update, the track fuser on each vehicle broadcasts its fused tracks to be fed
into the update of the other vehicle's track fuser in the next time stamp.

Vehicle2

Vehicle2 subsystem follows similar setup as Vehicle1 subsystem as described above.

Visualization

The Visualization block is implemented using the MATLAB System block and is defined using
HelperTrackDisplay block. The block uses RunTimeObject parameter of the blocks to display
their outputs. See “Access Block Data During Simulation” (Simulink) for further information on how
to access block outputs during simulation.

Results

After running the model, you visualize the results as on the figure. The animation below shows the
results for this simulation.

1 Featured Examples

1-82

The visualization includes two panels. The left panel shows the detections, local tracks, and fused
tracks that Vehicle1 generated during the simulation and represents the situational awareness of
the Vehicle1. The right panel shows the situational awareness of Vehicle2.

The recorded detections are represented by black circles. The local and fused tracks from Vehicle1
are represented by square and diamond respectively. The local and fused tracks from Vehicle2
represented by a solid black square and diamond. Notice that during the start of simulation,
Vehicle1 detects vehicles parked on the right side of the street, and tracks associated with the
parked vehicles are confirmed. Currently Vehicle2 only detects Vehicle1 which is immediately in
front of it. As the simulation continues the confirmed tracks from Vehicle1 are broadcasts to the
fuser on Vehicle2. After fusing the tracks, vehicle2 becomes aware of the objects prior to
detecting these objects on its own. Similarly, Vehicle2 tracks are broadcasts to Vehicle1.
Vehicle1 fuses these tracks and becomes aware of the objects prior to detecting them on its own.

In particular, you observe that the pedestrian standing between the blue and purple car on the right
side of the street is detected and tracked by Vehicle1. Vehicle2 first becomes aware of the
pedestrian by fusing the track from Vehicle1 at around 0.8 seconds. It takes Vehicle2 roughly 3
seconds before it starts detecting the pedestrian using its own sensor. The ability to track a
pedestrian based on inputs from Vehicle1 allows Vehicle2 to extend its situational awareness and
to mitigate the risk of accident.

Summary

This example showed how to perform track-to-track fusion in Simulink. You learned how to perform
tracking using a decentralized tracking architecture, where each vehicle is responsible for
maintaining its own local tracks, fuse tracks from other vehicles, and communicate the tracks to the
other vehicle. You also used a JPDA tracker block to generate the local tracks.

 Track-to-Track Fusion for Automotive Safety Applications in Simulink

1-83

Automotive Adaptive Cruise Control Using FMCW and MFSK
Technology

This example shows how to model an automotive radar in Simulink® that includes adaptive cruise
control (ACC), which is an important function of an advanced driver assistance system (ADAS). The
example explores scenarios with a single target and multiple targets. It shows how frequency-
modulated continuous-wave (FMCW) and multiple frequency-shift keying (MFSK) waveforms can be
processed to estimate the range and speed of surrounding vehicles.

Available Example Implementations

This example includes four Simulink models:

• FMCW Radar Range Estimation: slexFMCWExample.slx
• FMCW Radar Range and Speed Estimation of Multiple Targets:

slexFMCWMultiTargetsExample.slx
• MFSK Radar Range and Speed Estimation of Multiple Targets: slexMFSKMultiTargetsExample.slx
• FMCW Radar Range, Speed, and Angle Estimation of Multiple Targets:

slexFMCWMultiTargetsDOAExample.slx

FMCW Radar Range Estimation

The following model shows an end-to-end FMCW radar system. The system setup is similar to the
MATLAB® “Automotive Adaptive Cruise Control Using FMCW Technology” on page 1-126 example.
The only difference between this model and the aforementioned example is that this model has an
FMCW waveform sweep that is symmetric around the carrier frequency.

The figure shows the signal flow in the model. The Simulink blocks that make up the model are
divided into two major sections, the Radar section and the Channel and Target section. The shaded
block on the left represents the radar system. In this section, the FMCW signal is generated and

1 Featured Examples

1-84

matlab:slexFMCWExample
matlab:slexFMCWMultiTargetsExample
matlab:slexMFSKMultiTargetsExample
matlab:slexFMCWMultiTargetsDOAExample

transmitted. This section also contains the receiver that captures the radar echo and performs a
series of operations, such as dechirping and pulse integration, to estimate the target range. The
shaded block on the right models the propagation of the signal through space and its reflection from
the car. The output of the system, the estimated range in meters, is shown in the display block on the
left.

Radar

The radar system consists of a co-located transmitter and receiver mounted on a vehicle moving
along a straight road. It contains the signal processing components needed to extract the information
from the returned target echo.

• FMCW - Creates an FMCW signal. The FMCW waveform is a common choice in automotive radar,
because it provides a way to estimate the range using a continuous wave (CW) radar. The distance
is proportional to the frequency offset between the transmitted signal and the received echo. The
signal sweeps a bandwidth of 150 MHz.

• Transmitter - Transmits the waveform. The operating frequency of the transmitter is 77 GHz.
• Receiver Preamp - Receives the target echo and adds the receiver noise.
• Radar Platform - Simulates the radar vehicle trajectory.
• Signal Processing - Processes the received signal and estimates the range of the target

vehicle.

Within the Radar, the target echo goes through several signal processing steps before the target
range can be estimated. The signal processing subsystem consists of two high-level processing
stages.

• Stage 1: The first stage dechirps the received signal by multiplying it with the transmitted signal.
This operation produces a beat frequency between the target echo and the transmitted signal. The
target range is proportional to the beat frequency. This operation also reduces the bandwidth
required to process the signal. Next, 64 sweeps are buffered to form a datacube. The datacube
dimensions are fast-time versus slow-time. This datacube is then passed to a Matrix Sum block,
where the slow-time samples are integrated to boost the signal-to-noise ratio. The data is then
passed to the Range Response block, which performs an FFT operation to convert the beat
frequency to range. Radar signal processing lends itself well to parallelization, so the radar data is
then partitioned in range into 5 parts prior to further processing.

• Stage 2: The second stage consists of 5 parallel processing chains for the detection and estimation
of the target.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-85

Within Stage 2, each Detection and Estimation Chain block consists of 3 processing steps.

• Detection Processing: The radar data is first passed to a 1-dimensional cell-averaging (CA)
constant false alarm rate (CFAR) detector that operates in the range dimension. This block
identifies detections or hits.

• Detection Clustering: The detections are then passed to the next step where they are aggregated
into clusters using the Density-Based Spatial Clustering of Applications with Noise algorithm in
the DBSCAN Clusterer block. The clustering block clusters the detections in range using the
detections identified by the CA CFAR block.

• Parameter Estimation: After detections and clusters are identified, the last step is the Range
Estimator block. This step estimates the range of the detected targets in the radar data.

Channel and Target

The Channel and Target part of the model simulates the signal propagation and reflection off the
target vehicle.

1 Featured Examples

1-86

• Channel - Simulates the signal propagation between the radar vehicle and the target vehicle. The
channel can be set as either a line-of-sight free space channel or a two-ray channel where the
signal arrives at the receiver via both the direct path and the reflected path off the ground. The
default choice is a free space channel.

• Car - Reflects the incident signal and simulates the target vehicle trajectory. The subsystem,
shown below, consist of two parts: a target model to simulate the echo and a platform model to
simulate the dynamics of the target vehicle.

In the Car subsystem, the target vehicle is modeled as a point target with a specified radar cross
section. The radar cross section is used to measure how much power can be reflected from a target.

In this model's scenario, the radar vehicle starts at the origin, traveling at 100 km/h (27.8 m/s), while
the target vehicle starts at 43 meters in front of the radar vehicle, traveling at 96 km/h (26.7 m/s).
The positions and velocities of both the radar and the target vehicles are used in the propagation
channel to calculate the delay, Doppler, and signal loss.

Exploring the Model

Several dialog parameters of the model are calculated by the helper function helperslexFMCWParam.
To open the function from the model, click on Modify Simulation Parameters block. This
function is executed once when the model is loaded. It exports to the workspace a structure whose
fields are referenced by the dialogs. To modify any parameters, either change the values in the

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-87

structure at the command prompt or edit the helper function and rerun it to update the parameter
structure.

Results and Displays

The spectrogram of the FMCW signal below shows that the signal linearly sweeps a span of 150 MHz
approximately every 7 microseconds. This waveform provides a resolution of approximately 1 meter.

The spectrum of the dechirped signal is shown below. The figure indicates that the beat frequency
introduced by the target is approximately 100 kHz. Note that after dechirp, the signal has only a
single frequency component. The resulting range estimate calculated from this beat frequency, as
displayed in the overall model above, is well within the 1 meter range resolution.

1 Featured Examples

1-88

However, this result is obtained with the free space propagation channel. In reality, the propagation
between vehicles often involves multiple paths between the transmitter and the receiver. Therefore,
signals from different paths may add either constructively or destructively at the receiver. The
following section sets the propagation to a two-ray channel, which is the simplest multipath channel.

Run the simulation and observe the spectrum of the dechirped signal.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-89

Note that there is no longer a dominant beat frequency, because at this range, the signal from the
direct path and the reflected path combine destructively, thereby canceling each other out. This can
also be seen from the estimated range, which no longer matches the ground truth.

FMCW Radar Range and Speed Estimation of Multiple Targets

The example model below shows a similar end-to-end FMCW radar system that simulates 2 targets.
This example estimates both the range and the speed of the detected targets.

1 Featured Examples

1-90

The model is essentially the same as the previous example with 4 primary differences. This model:

• contains two targets,
• uses range-Doppler joint processing, which occurs in the Range-Doppler Response block,
• processes only a subset of the data in range rather than the whole datacube in multiple chains,

and
• performs detection using a 2-dimensional CA CFAR.

Radar

This model uses range-Doppler joint processing in the signal processing subsystem. Joint processing
in the range-Doppler domain makes it possible to estimate the Doppler across multiple sweeps and
then to use that information to resolve the range-Doppler coupling, resulting in better range
estimates.

The signal processing subsystem is shown in detail below.

The stages that make up the signal processing subsystem are similar to the prior example. Each stage
performs the following actions.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-91

• Stage 1: The first stage again performs dechirping and assembly of a datacube with 64 sweeps.
The datacube is then passed to the Range-Doppler Response block to compute the range-
Doppler map of the input signal. The datacube is then passed to the Range Subset block, which
obtains a subset of the datacube that will undergo further processing.

• Stage 2: The second stage is where the detection processing occurs. The detector in this example
is the CA CFAR 2-D block that operates in both the range and Doppler dimensions.

• Stage 3: Clustering occurs in the DBSCAN Clusterer block using both the range and Doppler
dimensions. Clustering results are then displayed by the Plot Clusters block.

• Stage 4: The fourth and final stage estimates the range and speed of the targets from the range-
Doppler map using the Range Estimator and Doppler Estimator blocks, respectively.

As mentioned in the beginning of the example, FMCW radar uses a frequency shift to derive the
range of the target. However, the motion of the target can also introduce a frequency shift due to the
Doppler effect. Therefore, the beat frequency has both range and speed information coupled.
Processing range and Doppler at the same time lets us remove this ambiguity. As long as the sweep is
fast enough so that the target remains in the same range gate for several sweeps, the Doppler can be
calculated across multiple sweeps and then be used to correct the initial range estimates.

Channel and Target

There are now two target vehicles in the scene, labeled as Car and Truck, and each vehicle has an
associated propagation channel. The Car starts 50 meters in front of the radar vehicle and travels at
a speed of 60 km/h (16.7 m/s). The Truck starts at 150 meters in front of the radar vehicle and travels
at a speed of 130 km/h (36.1 m/s).

Exploring the Model

Several dialog parameters of the model are calculated by the helper function
helperslexFMCWMultiTargetsParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports
to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

The FMCW signal shown below is the same as in the previous model.

1 Featured Examples

1-92

The two targets can be visualized in the range-Doppler map below.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-93

The map correctly shows two targets: one at 50 meters and one at 150 meters. Because the radar can
only measure the relative speed, the expected speed values for these two vehicles are 11.1 m/s and
-8.3 m/s, respectively, where the negative sign indicates that the Truck is moving away from the radar
vehicle. The exact speed estimates may be difficult to infer from the range-Doppler map, but the
estimated ranges and speeds are shown numerically in the display blocks in the model on the left. As
can be seen, the speed estimates match the expected values well.

MFSK Radar Range and Speed Estimation of Multiple Targets

To be able to do joint range and speed estimation using the above approach, the sweep needs to be
fairly fast to ensure the vehicle is approximately stationary during the sweep. This often translates to
higher hardware cost. MFSK is a new waveform designed specifically for automotive radar so that it
can achieve simultaneous range and speed estimation with longer sweeps.

The example below shows how to use MFSK waveform to perform the range and speed estimation.
The scene setup is the same as the previous model.

1 Featured Examples

1-94

The primary differences between this model and the previous are in the waveform block and the
signal processing subsystem. The MFSK waveform essentially consists of two FMCW sweeps with a
fixed frequency offset. The sweep in this case happens at discrete steps. From the parameters of the
MFSK waveform block, the sweep time can be computed as the product of the step time and the
number of steps per sweep. In this example, the sweep time is slightly over 2 ms, which is several
orders larger than the 7 microseconds for the FMCW used in the previous model. For more
information on the MFSK waveform, see the “Simultaneous Range and Speed Estimation Using
MFSK Waveform” example.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-95

The signal processing subsystem describes how the signal gets processed for the MFSK waveform.
The signal is first sampled at the end of each step and then converted to the frequency domain via an
FFT. A 1-dimensional CA CFAR detector is used to identify the peaks, which correspond to targets, in
the spectrum. Then the frequency at each peak location and the phase difference between the two
sweeps are used to estimate the range and speed of the target vehicles.

1 Featured Examples

1-96

Exploring the Model

Several dialog parameters of the model are calculated by the helper function
helperslexMFSKMultiTargetsParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports
to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

The estimated results are shown in the model, matching the results obtained from the previous
model.

FMCW Radar Range, Speed, and Angle Estimation of Multiple Targets

One can improve the angular resolution of the radar by using an array of antennas. This example
shows how to resolve three target vehicles traveling in separate lanes ahead of a vehicle carrying an
antenna array.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-97

In this scenario, the radar is traveling in the center lane of a highway at 100 km/h (27.8 m/s). The
first target vehicle is traveling 20 meters ahead in the same lane as the radar at 85 km/h (23.6 m/s).
The second target vehicle is traveling at 125 km/h (34.7 m/s) in the right lane and is 40 meters ahead.
The third target vehicle is traveling at 110 km/h (30.6 m/s) in the left lane and is 80 meters ahead.
The antenna array of the radar vehicle is a 4-element uniform linear array (ULA).

The origin of the scenario coordinate system is at the radar vehicle. The ground truth range, speed,
and angle of the target vehicles with respect to the radar are

 Range (m) Speed (m/s) Angle (deg)

 Car 1 20 4.2 0
 Car 2 40.05 -6.9 -2.9
 Car 3 80.03 -2.8 1.4

The signal processing subsystem now includes direction of arrival estimation in addition to the range
and Doppler processing.

1 Featured Examples

1-98

The processing is very similar to the previously discussed FMCW Multiple Target model. However, in
this model, there are 5 stages instead of 4.

• Stage 1: Similar to the previously discussed FMCW Multiple Target model, this stage performs
dechirping, datacube formation, and range-Doppler processing. The datacube is then passed to
the Range Subset block, thereby obtaining the subset of the datacube that will undergo further
processing.

• Stage 2: The second stage is the Phase Shift Beamformer block where beamforming occurs
based on the specified look angles that are defined in the parameter helper function
helperslexFMCWMultiTargetsDOAParam.

• Stage 3: The third stage is where the detection processing occurs. The detector in this example is
again the CA CFAR 2-D block that operates in both the range and Doppler dimensions.

• Stage 4: Clustering occurs in the DBSCAN Clusterer block using the range, Doppler, and angle
dimensions. Clustering results are then displayed by the Plot Clusters block.

• Stage 5: The fourth and final stage estimates the range and speed of the targets from the range-
Doppler map using the Range Estimator and Doppler Estimator blocks, respectively. In
addition, direction of arrival (DOA) estimation is performed using a custom block that features an
implementation of the Phased Array System Toolbox™ Root MUSIC Estimator.

Exploring the Model

Several dialog parameters of the model are calculated by the helper function
helperslexFMCWMultiTargetsDOAParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports
to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

The estimated results are shown in the model and match the expected values well.

Summary

The first model shows how to use an FMCW radar to estimate the range of a target vehicle. The
information derived from the echo, such as the distance to the target vehicle, are necessary inputs to
a complete automotive ACC system.

The example also discusses how to perform combined range-Doppler processing to derive both range
and speed information of target vehicles. However, it is worth noting that when the sweep time is
long, the system capability for estimating the speed is degraded, and it is possible that the joint
processing can no longer provide accurate compensation for range-Doppler coupling. More
discussion on this topic can be found in the MATLAB “Automotive Adaptive Cruise Control Using
FMCW Technology” on page 1-126 example.

The following model shows how to perform the same range and speed estimation using an MFSK
waveform. This waveform can achieve the joint range and speed estimation with longer sweeps, thus
reducing the hardware requirements.

The last model is an FMCW radar featuring an antenna array that performs range, speed, and angle
estimation.

 Automotive Adaptive Cruise Control Using FMCW and MFSK Technology

1-99

Increasing Angular Resolution with Virtual Arrays
This example introduces how forming a virtual array in MIMO radars can help increase angular
resolution. It shows how to simulate a coherent MIMO radar signal processing chain using Phased
Array System Toolbox™.

Introduction

There are two categories of multiple input multiple output (MIMO) radars. Multistatic radars form
the first category. They are often referred to as statistical MIMO radars. Coherent MIMO radars form
the second category and are the focus of this example. A benefit of coherent MIMO radar signal
processing is the ability to increase the angular resolution of the physical antenna array by forming a
virtual array.

Virtual Array

A virtual array can be created by quasi-monostatic MIMO radars, where the transmit and receive
arrays are closely located. To better understand the virtual array concept, first look at the two-way
pattern of a conventional phased array radar. The two-way pattern of a phased array radar is the
product of its transmit array pattern and receive array pattern. For example, consider a 77 GHz
millimeter wave radar with a 2-element transmit array and a 4-element receive array.

fc = 77e9;
c = 3e8;
lambda = c/fc;
Nt = 2;
Nr = 4;

If both arrays have half-wavelength spacing, which are sometimes referred to as full arrays, then the
two-way pattern is close to the receive array pattern.

dt = lambda/2;
dr = lambda/2;

txarray = phased.ULA(Nt,dt);
rxarray = phased.ULA(Nr,dr);

ang = -90:90;

pattx = pattern(txarray,fc,ang,0,'Type','powerdb');
patrx = pattern(rxarray,fc,ang,0,'Type','powerdb');
pat2way = pattx+patrx;

helperPlotMultipledBPattern(ang,[pat2way pattx patrx],[-30 0],...
 {'Two-way Pattern','Tx Pattern','Rx Pattern'},...
 'Patterns of full/full arrays - 2Tx, 4Rx',...
 {'-','--','-.'});

1 Featured Examples

1-100

If the full transmit array is replaced with a thin array, meaning the element spacing is wider than half
wavelength, then the two-way pattern has a narrower beamwidth. Notice that even though the thin
transmit array has grating lobes, those grating lobes are not present in the two-way pattern.

dt = Nr*lambda/2;
txarray = phased.ULA(Nt,dt);
pattx = pattern(txarray,fc,ang,0,'Type','powerdb');
pat2way = pattx+patrx;
helperPlotMultipledBPattern(ang,[pat2way pattx patrx],[-30 0],...
 {'Two-way Pattern','Tx Pattern','Rx Pattern'},...
 'Patterns of thin/full arrays - 2Tx, 4Rx',...
 {'-','--','-.'});

 Increasing Angular Resolution with Virtual Arrays

1-101

The two-way pattern of this system corresponds to the pattern of a virtual receive array with 2 x 4 =
8 elements. Thus, by carefully choosing the geometry of the transmit and the receive arrays, we can
increase the angular resolution of the system without adding more antennas to the arrays.

varray = phased.ULA(Nt*Nr,dr);
patv = pattern(varray,fc,ang,0,'Type','powerdb');
helperPlotMultipledBPattern(ang,[pat2way patv],[-30 0],...
 {'Two-way Pattern','Virtual Array Pattern'},...
 'Patterns of thin/full arrays and virtual array',...
 {'-','--'},[1 2]);

1 Featured Examples

1-102

Virtual Array in MIMO Radars

In a coherent MIMO radar system, each antenna of the transmit array transmits an orthogonal
waveform. Because of this orthogonality, it is possible to recover the transmitted signals at the
receive array. The measurements at the physical receive array corresponding to each orthogonal
waveform can then be stacked to form the measurements of the virtual array.

Note that since each element in the transmit array radiates independently, there is no transmit
beamforming, so the transmit pattern is broad and covers a large field of view (FOV). This allows the
simultaneous illumination of all targets in the FOV. The receive array can then generate multiple
beams to process all target echoes. Compared to conventional phased array radars that need
successive scans to cover the entire FOV, this is another advantage of MIMO radars for applications
that require fast reaction time.

TDM-MIMO Radar Simulation

Time division multiplexing (TDM) is one way to achieve orthogonality among transmit channels. The
remainder of this example shows how to model and simulate a TDM-MIMO frequency-modulated

 Increasing Angular Resolution with Virtual Arrays

1-103

continuous wave (FMCW) automotive radar system. The waveform characteristics are adapted from
the “Automotive Adaptive Cruise Control Using FMCW Technology” on page 1-126 example.

waveform = helperDesignFMCWWaveform(c,lambda);
fs = waveform.SampleRate;

Imagine that there are two cars in the FOV with a separation of 20 degrees. As seen in the earlier
array pattern plots of this example, the 3dB beamwidth of a 4-element receive array is around 30
degrees so conventional processing would not be able to separate the two targets in the angular
domain. The radar sensor parameters are as follows:

transmitter = phased.Transmitter('PeakPower',0.001,'Gain',36);
receiver = phased.ReceiverPreamp('Gain',40,'NoiseFigure',4.5,'SampleRate',fs);

txradiator = phased.Radiator('Sensor',txarray,'OperatingFrequency',fc,...
 'PropagationSpeed',c,'WeightsInputPort',true);

rxcollector = phased.Collector('Sensor',rxarray,'OperatingFrequency',fc,...
 'PropagationSpeed',c);

Define the position and motion of the ego vehicle and the two cars in the FOV.

radar_speed = 100*1000/3600; % Ego vehicle speed 100 km/h
radarmotion = phased.Platform('InitialPosition',[0;0;0.5],'Velocity',[radar_speed;0;0]);

car_dist = [40 50]; % Distance between sensor and cars (meters)
car_speed = [-80 96]*1000/3600; % km/h -> m/s
car_az = [-10 10];
car_rcs = [20 40];
car_pos = [car_dist.*cosd(car_az);car_dist.*sind(car_az);0.5 0.5];

cars = phased.RadarTarget('MeanRCS',car_rcs,'PropagationSpeed',c,'OperatingFrequency',fc);
carmotion = phased.Platform('InitialPosition',car_pos,'Velocity',[car_speed;0 0;0 0]);

The propagation model is assumed to be free space.

channel = phased.FreeSpace('PropagationSpeed',c,...
 'OperatingFrequency',fc,'SampleRate',fs,'TwoWayPropagation',true);

The raw data cube received by the physical array of the TDM MIMO radar can then be simulated as
follows:

rng(2017);
Nsweep = 64;
Dn = 2; % Decimation factor
fs = fs/Dn;
xr = complex(zeros(fs*waveform.SweepTime,Nr,Nsweep));

w0 = [0;1]; % weights to enable/disable radiating elements

for m = 1:Nsweep
 % Update radar and target positions
 [radar_pos,radar_vel] = radarmotion(waveform.SweepTime);
 [tgt_pos,tgt_vel] = carmotion(waveform.SweepTime);
 [~,tgt_ang] = rangeangle(tgt_pos,radar_pos);

 % Transmit FMCW waveform
 sig = waveform();

1 Featured Examples

1-104

 txsig = transmitter(sig);

 % Toggle transmit element
 w0 = 1-w0;
 txsig = txradiator(txsig,tgt_ang,w0);

 % Propagate the signal and reflect off the target
 txsig = channel(txsig,radar_pos,tgt_pos,radar_vel,tgt_vel);
 txsig = cars(txsig);

 % Dechirp the received radar return
 rxsig = rxcollector(txsig,tgt_ang);
 rxsig = receiver(rxsig);
 dechirpsig = dechirp(rxsig,sig);

 % Decimate the return to reduce computation requirements
 for n = size(xr,2):-1:1
 xr(:,n,m) = decimate(dechirpsig(:,n),Dn,'FIR');
 end
end

Virtual Array Processing

The data cube received by the physical array must be processed to form the virtual array data cube.
For the TDM-MIMO radar system used in this example, the measurements corresponding to the two
transmit antenna elements can be recovered from two consecutive sweeps by taking every other page
of the data cube.

Nvsweep = Nsweep/2;
xr1 = xr(:,:,1:2:end);
xr2 = xr(:,:,2:2:end);

Now the data cube in xr1 contains the return corresponding to the first transmit antenna element,
and the data cube in xr2 contains the return corresponding to the second transmit antenna element.
Hence, the data cube from the virtual array can be formed as:

xrv = cat(2,xr1,xr2);

Next, perform range-Doppler processing on the virtual data cube. Because the range-Doppler
processing is linear, the phase information is preserved. Therefore, the resulting response can be
used later to perform further spatial processing on the virtual aperture.

nfft_r = 2^nextpow2(size(xrv,1));
nfft_d = 2^nextpow2(size(xrv,3));

rngdop = phased.RangeDopplerResponse('PropagationSpeed',c,...
 'DopplerOutput','Speed','OperatingFrequency',fc,'SampleRate',fs,...
 'RangeMethod','FFT','PRFSource','Property',...
 'RangeWindow','Hann','PRF',1/(Nt*waveform.SweepTime),...
 'SweepSlope',waveform.SweepBandwidth/waveform.SweepTime,...
 'RangeFFTLengthSource','Property','RangeFFTLength',nfft_r,...
 'DopplerFFTLengthSource','Property','DopplerFFTLength',nfft_d,...
 'DopplerWindow','Hann');

[resp,r,sp] = rngdop(xrv);

 Increasing Angular Resolution with Virtual Arrays

1-105

The resulting resp is a data cube containing the range-Doppler response for each element in the
virtual array. As an illustration, the range-Doppler map for the first element in the virtual array is
shown.

plotResponse(rngdop,squeeze(xrv(:,1,:)));

The detection can be performed on the range-Doppler map from each pair of transmit and receive
element to identify the targets in scene. In this example, a simple threshold-based detection is
performed on the map obtained between the first transmit element and the first receive element,
which corresponds to the measurement at the first element in the virtual array. Based on the range-
Doppler map shown in the previous figure, the threshold is set at 10 dB below the maximum peak.

respmap = squeeze(mag2db(abs(resp(:,1,:))));
ridx = helperRDDetection(respmap,-10);

Based on the detected range of the targets, the corresponding range cuts can be extracted from the
virtual array data cube to perform further spatial processing. To verify that the virtual array provides
a higher resolution compared to the physical array, the code below extracts the range cuts for both
targets and combines them into a single data matrix. The beamscan algorithm is then performed over
these virtual array measurements to estimate the directions of the targets.

xv = squeeze(sum(resp(ridx,:,:),1))';

doa = phased.BeamscanEstimator('SensorArray',varray,'PropagationSpeed',c,...
 'OperatingFrequency',fc,'DOAOutputPort',true,'NumSignals',2,'ScanAngles',ang);
[Pdoav,target_az_est] = doa(xv);

1 Featured Examples

1-106

fprintf('target_az_est = [%s]\n',num2str(target_az_est));

target_az_est = [-6 10]

The two targets are successfully separated. The actual angles for the two cars are -10 and 10
degrees.

The next figure compares the spatial spectrums from the virtual and the physical receive array.

doarx = phased.BeamscanEstimator('SensorArray',rxarray,'PropagationSpeed',c,...
 'OperatingFrequency',fc,'DOAOutputPort',true,'ScanAngles',ang);
Pdoarx = doarx(xr);

helperPlotMultipledBPattern(ang,mag2db(abs([Pdoav Pdoarx])),[-30 0],...
 {'Virtual Array','Physical Array'},...
 'Spatial spectrum for virtual array and physical array',{'-','--'});

In this example, the detection is performed on the range-Doppler map without spatial processing of
the virtual array data cube. This works because the SNR is high. If the SNR is low, it is also possible
to process the virtual array blindly across the entire range-Doppler map to maximize the SNR before
the detection.

Phase-coded MIMO Radars

Although a TDM-MIMO radar's processing chain is relatively simple, it uses only one transmit
antenna at a time. Therefore, it does not take advantage of the full capacity of the transmit array. To
improve the efficiency, there are other orthogonal waveforms that can be used in a MIMO radar.

 Increasing Angular Resolution with Virtual Arrays

1-107

Using the same configuration as the example, one scheme to achieve orthogonality is to have one
element always transmit the same FMCW waveform, while the second transmit element reverses the
phase of the FMCW waveform for each sweep. This way both transmit elements are active in all
sweeps. For the first sweep, the two elements transmit the same waveform, and for the second
sweep, the two elements transmit the waveform with opposite phase, and so on. This is essentially
coding the consecutive sweeps from different elements with a Hadamard code. It is similar to the
Alamouti codes used in MIMO communication systems.

MIMO radars can also adopt phase-coded waveforms in MIMO radar. In this case, each radiating
element can transmit a uniquely coded waveform, and the receiver can then have a matched filter
bank corresponding to each of those phase coded waveform. The signals can then be recovered and
processed to form the virtual array.

Summary

In this example, we gave a brief introduction to coherent MIMO radar and the virtual array concept.
We simulated the return of a MIMO radar with a 2-element transmit array and a 4-element receive
array and performed direction of arrival estimation of the simulated echos of two closely spaced
targets using an 8-element virtual array.

References

[1] Frank Robey, et al. MIMO Radar Theory and Experimental Results, Conference Record of the
Thirty Eighth Asilomar Conference on Signals, Systems and Computers, California, pp. 300-304,
2004.

[2] Eli Brookner, MIMO Radars and Their Conventional Equivalents, IEEE Radar Conference, 2015.

[3] Sandeep Rao, MIMO Radar, Texas Instruments Application Report SWRA554, May 2017.

[4] Jian Li and Peter Stoica, MIMO Radar Signal Processing, John Wiley & Sons, 2009.

1 Featured Examples

1-108

Patch Antenna Array for FMCW Radar
This example shows how to model a 77 GHz 2x4 antenna array for Frequency-Modulated Continuous-
Wave (FMCW) radar applications. The presence of antennas and antenna arrays in and around
vehicles has become a commonplace with the introduction of wireless collision detection, collision
avoidance, and lane departure warning systems. The two frequency bands considered for such
systems are centered around 24 GHz and 77 GHz, respectively. In this example, we will investigate
the microstrip patch antenna as a phased array radiator. The dielectric substrate is air.

This example requires the Antenna Toolbox™.

Antenna Array Design

The FMCW antenna array is intended for a forward radar system designed to look for and prevent a
collision. Therefore, A cosine antenna pattern is an appropriate choice for the initial design since it
does not radiate any energy backwards. Assume that the radar system operates at 77 GHz with a 700
MHz bandwidth.

fc = 77e9;
fmin = 73e9;
fmax = 80e9;
vp = physconst('lightspeed');
lambda = vp/fc;

cosineantenna = phased.CosineAntennaElement;
cosineantenna.FrequencyRange = [fmin fmax];
pattern(cosineantenna,fc)

 Patch Antenna Array for FMCW Radar

1-109

The array itself needs to be mounted on or around the front bumper. The array configuration we
investigate is a 2 X 4 rectangular array, similar to what is mentioned in [1]. Such a design has bigger
aperture along azimuth direction thus providing better azimuth resolution.

Nrow = 2;
Ncol = 4;
fmcwCosineArray = phased.URA;
fmcwCosineArray.Element = cosineantenna;
fmcwCosineArray.Size = [Nrow Ncol];
fmcwCosineArray.ElementSpacing = [0.5*lambda 0.5*lambda];
pattern(fmcwCosineArray,fc)

1 Featured Examples

1-110

Design Realistic Patch Antenna

The Antenna Toolbox has several antenna elements that could provide hemispherical coverage and
resemble a pattern of cosine shape. Choose a patch antenna element with typical radiator
dimensions. The patch length is approximately half-wavelength at 77 GHz and the width is 1.5 times
the length to improving the bandwidth. The ground plane is on each side and the feed offset from
center in the direction of the patch length is about a quarter of the length.

patchElement = design(patchMicrostrip,fc);

Because the default patch antenna geometry has its maximum radiation directed towards zenith,
rotate the patch antenna by 90 degrees about the y-axis so that the maximum would now occur along
the x-axis.

patchElement.Tilt = 90;
patchElement.TiltAxis = [0 1 0];

Isolated Patch Antenna 3D Pattern and Resonance

Plot the pattern of the patch antenna at 77 GHz. The patch is a medium gain antenna with the peak
directivity around 6-9 dBi.

myFigure = gcf;
myFigure.Color = 'w';
pattern(patchElement,fc)

 Patch Antenna Array for FMCW Radar

1-111

The patch is radiating in the correct mode with a pattern maximum at 0 degrees azimuth and 0
degrees elevation. Since the initial dimensions are approximations, it is important to verify the
antenna's input impedance behavior.

Numfreqs = 21;
freqsweep = unique([linspace(fmin,fmax,Numfreqs) fc]);
impedance(patchElement,freqsweep);

1 Featured Examples

1-112

According to the figure, the patch antenna has its first resonance (parallel resonance) at 74 GHz. It is
a common practice to shift this resonance to 77 GHz by scaling the length of the patch.

act_resonance = 74e9;
lambda_act = vp/act_resonance;
scale = lambda/lambda_act;
patchElement.Length = scale*patchElement.Length;

Next is to check the reflection coefficient of the patch antenna to confirm a good impedance match. It
is typical to consider the value as a threshold value for determining the antenna
bandwidth.

s = sparameters(patchElement,freqsweep);
rfplot(s,'m-.')
hold on
line(freqsweep/1e9,ones(1,numel(freqsweep))*-10,'LineWidth',1.5)
hold off

 Patch Antenna Array for FMCW Radar

1-113

The deep minimum at 77 GHz indicates a good match to 50. The antenna bandwidth is slightly
greater than 1 GHz. Thus, the frequency band is from 76.5 GHz to 77.5 GHz.

Finally, check if the pattern at the edge frequencies of the band meets the design. This is a good
indication whether the pattern behaves the same across the band. The patterns at 76.5 GHz and 77.6
GHz are shown below.

pattern(patchElement,76.5e9)

1 Featured Examples

1-114

pattern(patchElement,77.6e9)

 Patch Antenna Array for FMCW Radar

1-115

In general, it is a good practice to check pattern behavior over the frequency band of interest.

Create Array from Isolated Radiators and Plot Pattern

Next, creates a uniform rectangular array (URA) with the patch antenna. The spacing is chosen to be
, where is the wavelength at the upper frequency of the band (77.6 GHz).

fc2 = 77.6e9;
lambda_fc2 = vp/77.6e9;
fmcwPatchArray = phased.URA;
fmcwPatchArray.Element = patchElement;
fmcwPatchArray.Size = [Nrow Ncol];
fmcwPatchArray.ElementSpacing = [0.5*lambda_fc2 0.5*lambda_fc2];

The following figure shows the pattern of the resulting patch antenna array. The pattern is computed
using a 5 degree separation in both azimuth and elevation.

az = -180:5:180;
el = -90:5:90;
clf
pattern(fmcwPatchArray,fc,az,el)

1 Featured Examples

1-116

Plots below compare the pattern variation in 2 orthogonal planes for the patch antenna array and the
cosine element array. Note that both arrays ignore mutual coupling effect.

First, plot the patterns along the azimuth direction.

patternAzimuth(fmcwPatchArray,fc)
hold on
patternAzimuth(fmcwCosineArray,fc)
p = polarpattern('gco');
p.LegendLabels = {'Patch','Cosine'};

 Patch Antenna Array for FMCW Radar

1-117

Then, plot the patterns along the elevation direction.

clf
patternElevation(fmcwPatchArray,fc)
hold on
patternElevation(fmcwCosineArray,fc)
p = polarpattern('gco');
p.LegendLabels = {'Patch','Cosine'};

1 Featured Examples

1-118

The figures show that both arrays have similar pattern behavior around the main beam in the
elevation plane (azimuth = 0 deg). The patch-element array has a significant backlobe as compared to
the cosine-element array.

Conclusions

This example starts the design of an antenna array for FMCW radar with an ideal cosine antenna and
then uses a patch antenna to form the real array. The example compares the patterns from the two
arrays to show the design tradeoff. From the comparison, it can be seen that using the isolated patch
element is a useful first step in understanding the effect that a realistic antenna element would have
on the array pattern.

However, analysis of realistic arrays must also consider mutual coupling effect. Since this is a small
array (8 elements in 2x4 configuration), the individual element patterns in the array environment
could be distorted significantly. As a result it is not possible to replace the isolated element pattern
with an embedded element pattern, as shown in the “Modeling Mutual Coupling in Large Arrays
Using Embedded Element Pattern” example. A full-wave analysis must be performed to understand
the effect of mutual coupling on the overall array performance.

Reference

[1] R. Kulke, et al. 24 GHz Radar Sensor Integrates Patch Antennas, EMPC 2005 http://
empire.de/main/Empire/pdf/publications/2005/26-doc-empc2005.pdf

 Patch Antenna Array for FMCW Radar

1-119

Simultaneous Range and Speed Estimation Using MFSK
Waveform

This example compares triangle sweep frequency-modulated continuous (FMCW) and multiple
frequency-shift keying (MFSK) waveforms used for simultaneous range and speed estimation for
multiple targets. The MFSK waveform is specifically designed for automotive radar systems used in
advanced driver assistance systems (ADAS). It is particularly appealing in multi-target scenarios
because it does not introduce ghost targets.

Triangle Sweep FMCW Waveform

In example “Automotive Adaptive Cruise Control Using FMCW Technology” on page 1-126, an
automotive radar system is designed to perform range estimation for an automatic cruise control
system. In the latter part of that example, a triangle sweep FMCW waveform is used to estimate the
range and speed of the target vehicle simultaneously.

Although the triangle sweep FMCW waveform solves the range-Doppler coupling issue elegantly for a
single target, its processing becomes complicated in multi-target situations. Next section shows how
a triangle sweep FMCW waveform behaves when two targets are present.

The scene includes a car 50 meters away from the radar, traveling at 96 km/h along the same
direction as the radar, and a truck at 55 meters away, traveling at 70 km/h in the opposite direction.
The radar itself is traveling at 60 km/h.

rng(2015);

[fmcwwaveform,target,tgtmotion,channel,transmitter,receiver,...
 sensormotion,c,fc,lambda,fs,maxbeatfreq] = helperMFSKSystemSetup;

Next, simulate the radar echo from the two vehicles. The FMCW waveform has a sweep bandwidth of
150 MHz so the range resolution is 1 meter. Each up or down sweep takes 1 millisecond so each
triangle sweep takes 2 milliseconds. Note that only one triangle sweep is needed to perform the joint
range and speed estimation.

Nsweep = 2;
xr = helperFMCWSimulate(Nsweep,fmcwwaveform,sensormotion,tgtmotion,...
 transmitter,channel,target,receiver);

Although the system needs a 150 MHz bandwidth, the maximum beat frequency is much less. This
means that at the processing side, one can decimate the signal to a lower frequency to ease the
hardware requirements. The beat frequencies are then estimated using the decimated signal.

dfactor = ceil(fs/maxbeatfreq)/2;
fs_d = fs/dfactor;
fbu_rng = rootmusic(decimate(xr(:,1),dfactor),2,fs_d);
fbd_rng = rootmusic(decimate(xr(:,2),dfactor),2,fs_d);

Now there are two beat frequencies from the up sweep and two beat frequencies from the down
sweeps. Since any pair of beat frequencies from an up sweep and a down sweep can define a target,
there are four possible combinations of range and Doppler estimates yet only two of them are
associated with the real targets.

sweep_slope = fmcwwaveform.SweepBandwidth/fmcwwaveform.SweepTime;
rng_est = beat2range([fbu_rng fbd_rng;fbu_rng flipud(fbd_rng)],...
 sweep_slope,c)

1 Featured Examples

1-120

rng_est = 4×1

 49.9802
 54.9406
 64.2998
 40.6210

The remaining two are what often referred to as the ghost targets. The relationship between real
targets and ghost targets can be better explained using time-frequency representation.

As shown in the figure, each intersection of a up sweep return and a down sweep return indicates a
possible target. So it is critical to distinguish between the true targets and the ghost targets. To solve
this ambiguity, one can transmit additional FMCW signals with different sweep slopes. Since only the
true targets will occupy the same intersection in the time-frequency domain, the ambiguity is
resolved. However, this approach significantly increases the processing complexity as well as the
processing time needed to obtain the valid estimates.

MFSK Waveform

Multiple frequency shift keying (MFSK) waveform [1] on page 1-0 is designed for automotive radar
to achieve simultaneous range and Doppler estimation under multiple targets situation without falling
into the trap of ghost targets. Its time-frequency representation is shown in the following figure.

 Simultaneous Range and Speed Estimation Using MFSK Waveform

1-121

The figure indicates that the MFSK waveform is a combination of two linear FMCW waveforms with a
fixed frequency offset. Unlike the regular FMCW waveforms, MFSK sweeps the entire bandwidth at
discrete steps. Within each step, a single frequency continuous wave signal is transmitted. Because
there are two tones within each step, it can be considered as a frequency shift keying (FSK)
waveform. Thus, there is one set of range and Doppler relation from FMCW waveform and another
set of range and Doppler relation from FSK. Combining two sets of relations together can help
resolve the coupling between range and Doppler regardless the number of targets present in the
scene.

The following sections simulates the previous example again, but uses an MFSK waveform instead.

End-to-end Radar System Simulation Using MFSK Waveform

First, parameterize the MFSK waveform to satisfy the system requirement specified in [1] on page 1-
0 . Because the range resolution is 1 meter, the sweep bandwidth is set at 150 MHz. In addition, the
frequency offset is set at -294 kHz as specified in [1] on page 1-0 . Each step lasts about 2
microseconds and the entire sweep has 1024 steps. Thus, each FMCW sweep takes 512 steps and the
total sweep time is a little over 2 ms. Note that the sweep time is comparable to the FMCW signal
used in previous sections.

mfskwaveform = phased.MFSKWaveform(...
 'SampleRate',151e6,...
 'SweepBandwidth',150e6,...
 'StepTime',2e-6,...
 'StepsPerSweep',1024,...
 'FrequencyOffset',-294e3,...
 'OutputFormat','Sweeps',...
 'NumSweeps',1);

The figure below shows the spectrogram of the waveform. It is zoomed into a small interval to better
reveal the time-frequency characteristics of the waveform.

numsamp_step = round(mfskwaveform.SampleRate*mfskwaveform.StepTime);
sig_display = mfskwaveform();

1 Featured Examples

1-122

spectrogram(sig_display(1:8192),kaiser(3*numsamp_step,100),...
 ceil(2*numsamp_step),linspace(0,4e6,2048),mfskwaveform.SampleRate,...
 'yaxis','reassigned','minthreshold',-60)

Next, simulate the return of the system. Again, only 1 sweep is needed to estimate the range and
Doppler.

Nsweep = 1;
release(channel);
channel.SampleRate = mfskwaveform.SampleRate;
release(receiver);
receiver.SampleRate = mfskwaveform.SampleRate;

xr = helperFMCWSimulate(Nsweep,mfskwaveform,sensormotion,tgtmotion,...
 transmitter,channel,target,receiver);

The subsequent processing samples the return echo at the end of each step and group the sampled
signals into two sequences corresponding to two sweeps. Note that the sampling frequency of the
resulting sequence is now proportional to the time at each step, which is much less compared the
original sample rate.

x_dechirp = reshape(xr(numsamp_step:numsamp_step:end),2,[]).';
fs_dechirp = 1/(2*mfskwaveform.StepTime);

As in the case of FMCW signals, the MFSK waveform is processed in the frequency domain. Next
figures shows the frequency spectrums of the received echos corresponding to the two sweeps.

 Simultaneous Range and Speed Estimation Using MFSK Waveform

1-123

xf_dechirp = fft(x_dechirp);
num_xf_samp = size(xf_dechirp,1);
beatfreq_vec = (0:num_xf_samp-1).'/num_xf_samp*fs_dechirp;

clf;
subplot(211),plot(beatfreq_vec/1e3,abs(xf_dechirp(:,1)));grid on;
ylabel('Magnitude');
title('Frequency spectrum for sweep 1');
subplot(212),plot(beatfreq_vec/1e3,abs(xf_dechirp(:,2)));grid on;
ylabel('Magnitude');
title('Frequency spectrum for sweep 2');
xlabel('Frequency (kHz)')

Note that there are two peaks in each frequency spectrum indicating two targets. In addition, the
peaks are at the identical locations in both returns so there is no ghost targets.

To detect the peaks, one can use a CFAR detector. Once detected, the beat frequencies as well as the
phase differences between two spectra are computed at the peak locations.

cfar = phased.CFARDetector('ProbabilityFalseAlarm',1e-2,...
 'NumTrainingCells',8);

peakidx = cfar(abs(xf_dechirp(:,1)),1:num_xf_samp);

Fbeat = beatfreq_vec(peakidx);
phi = angle(xf_dechirp(peakidx,2))-angle(xf_dechirp(peakidx,1));

1 Featured Examples

1-124

Finally, the beat frequencies and phase differences are used to estimate the range and speed.
Depending on how one constructs the phase difference, the equations are slightly different. For the
approach shown in this example, it can be shown that the range and speed satisfies the following
relation:

fb = − 2v
λ + 2βR

c

Δϕ = −
4πTsv

λ +
4πfof f setR

c

where fb is the beat frequency, Δϕ is the phase difference, λ is the wavelength, c is the propagation
speed, Ts is the step time, fof f set is the frequency offset, β is the sweep slope, R is the range, and v is
the speed. Based on the equation, the range and speed are estimated below:

sweep_slope = mfskwaveform.SweepBandwidth/...
 (mfskwaveform.StepsPerSweep*mfskwaveform.StepTime);
temp = ...
 [1 sweep_slope;mfskwaveform.StepTime mfskwaveform.FrequencyOffset]\...
 [Fbeat phi/(2*pi)].';

r_est = c*temp(2,:)/2

r_est = 1×2

 54.8564 49.6452

v_est = lambda*temp(1,:)/(-2)

v_est = 1×2

 36.0089 -9.8495

The estimated range and speed match the true range and speed values, as tabulated below, very well.

• Car: r = 50 m, v = -10 m/s
• Truck: r = 55 m, v = 36 m/s

Summary

This example shows two simultaneous range and speed estimation approaches, using either a triangle
sweep FMCW waveform or an MFSK waveform. It is shown that MFSK waveform have an advantage
over FMCW waveform when multiple targets are present since it does not introduce ghost targets
during the processing.

References

[1] Rohling, H. and M. Meinecke. Waveform Design Principle for Automotive Radar Systems,
Proceedings of CIE International Conference on Radar, 2001.

 Simultaneous Range and Speed Estimation Using MFSK Waveform

1-125

Automotive Adaptive Cruise Control Using FMCW Technology
This example shows how to model an automotive adaptive cruise control system using the frequency
modulated continuous wave (FMCW) technique. This example performs range and Doppler estimation
of a moving vehicle. Unlike pulsed radar systems that are commonly seen in the defense industry,
automotive radar systems often adopt FMCW technology. Compared to pulsed radars, FMCW radars
are smaller, use less power, and are much cheaper to manufacture. As a consequence, FMCW radars
can only monitor a much smaller distance.

FMCW Waveform

Consider an automotive long range radar (LRR) used for adaptive cruise control (ACC). This kind of
radar usually occupies the band around 77 GHz, as indicated in [1]. The radar system constantly
estimates the distance between the vehicle it is mounted on and the vehicle in front of it, and alerts
the driver when the two become too close. The figure below shows a sketch of ACC.

A popular waveform used in ACC system is FMCW. The principle of range measurement using the
FMCW technique can be illustrated using the following figure.

The received signal is a time-delayed copy of the transmitted signal where the delay, , is related to
the range. Because the signal is always sweeping through a frequency band, at any moment during
the sweep, the frequency difference, , is a constant between the transmitted signal and the received
signal. is usually called the beat frequency. Because the sweep is linear, one can derive the time
delay from the beat frequency and then translate the delay to the range.

1 Featured Examples

1-126

In an ACC setup, the maximum range the radar needs to monitor is around 200 m and the system
needs to be able to distinguish two targets that are 1 meter apart. From these requirements, one can
compute the waveform parameters.

fc = 77e9;
c = 3e8;
lambda = c/fc;

The sweep time can be computed based on the time needed for the signal to travel the unambiguous
maximum range. In general, for an FMCW radar system, the sweep time should be at least 5 to 6
times the round trip time. This example uses a factor of 5.5.

range_max = 200;
tm = 5.5*range2time(range_max,c);

The sweep bandwidth can be determined according to the range resolution and the sweep slope is
calculated using both sweep bandwidth and sweep time.

range_res = 1;
bw = range2bw(range_res,c);
sweep_slope = bw/tm;

Because an FMCW signal often occupies a huge bandwidth, setting the sample rate blindly to twice
the bandwidth often stresses the capability of A/D converter hardware. To address this issue, one can
often choose a lower sample rate. Two things can be considered here:

1 For a complex sampled signal, the sample rate can be set to the same as the bandwidth.
2 FMCW radars estimate the target range using the beat frequency embedded in the dechirped

signal. The maximum beat frequency the radar needs to detect is the sum of the beat frequency
corresponding to the maximum range and the maximum Doppler frequency. Hence, the sample
rate only needs to be twice the maximum beat frequency.

In this example, the beat frequency corresponding to the maximum range is given by

fr_max = range2beat(range_max,sweep_slope,c);

In addition, the maximum speed of a traveling car is about 230 km/h. Hence the maximum Doppler
shift and the maximum beat frequency can be computed as

v_max = 230*1000/3600;
fd_max = speed2dop(2*v_max,lambda);

fb_max = fr_max+fd_max;

This example adopts a sample rate of the larger of twice the maximum beat frequency and the
bandwidth.

fs = max(2*fb_max,bw);

The following table summarizes the radar parameters.

System parameters Value

Operating frequency (GHz) 77
Maximum target range (m) 200
Range resolution (m) 1
Maximum target speed (km/h) 230

 Automotive Adaptive Cruise Control Using FMCW Technology

1-127

Sweep time (microseconds) 7.33
Sweep bandwidth (MHz) 150
Maximum beat frequency (MHz) 27.30
Sample rate (MHz) 150

With all the information above, one can set up the FMCW waveform used in the radar system.

waveform = phased.FMCWWaveform('SweepTime',tm,'SweepBandwidth',bw,...
 'SampleRate',fs);

This is a up-sweep linear FMCW signal, often referred to as sawtooth shape. One can examine the
time-frequency plot of the generated signal.

sig = waveform();
subplot(211); plot(0:1/fs:tm-1/fs,real(sig));
xlabel('Time (s)'); ylabel('Amplitude (v)');
title('FMCW signal'); axis tight;
subplot(212); spectrogram(sig,32,16,32,fs,'yaxis');
title('FMCW signal spectrogram');

Target Model

The target of an ACC radar is usually a car in front of it. This example assumes the target car is
moving 50 m ahead of the car with the radar, at a speed of 96 km/h along the x-axis.

The radar cross section of a car, according to [1], can be computed based on the distance between
the radar and the target car.

1 Featured Examples

1-128

car_dist = 43;
car_speed = 96*1000/3600;
car_rcs = db2pow(min(10*log10(car_dist)+5,20));

cartarget = phased.RadarTarget('MeanRCS',car_rcs,'PropagationSpeed',c,...
 'OperatingFrequency',fc);
carmotion = phased.Platform('InitialPosition',[car_dist;0;0.5],...
 'Velocity',[car_speed;0;0]);

The propagation model is assumed to be free space.

channel = phased.FreeSpace('PropagationSpeed',c,...
 'OperatingFrequency',fc,'SampleRate',fs,'TwoWayPropagation',true);

Radar System Setup

The rest of the radar system includes the transmitter, the receiver, and the antenna. This example
uses the parameters presented in [1]. Note that this example models only main components and omits
the effect from other components, such as coupler and mixer. In addition, for the sake of simplicity,
the antenna is assumed to be isotropic and the gain of the antenna is included in the transmitter and
the receiver.

ant_aperture = 6.06e-4; % in square meter
ant_gain = aperture2gain(ant_aperture,lambda); % in dB

tx_ppower = db2pow(5)*1e-3; % in watts
tx_gain = 9+ant_gain; % in dB

rx_gain = 15+ant_gain; % in dB
rx_nf = 4.5; % in dB

transmitter = phased.Transmitter('PeakPower',tx_ppower,'Gain',tx_gain);
receiver = phased.ReceiverPreamp('Gain',rx_gain,'NoiseFigure',rx_nf,...
 'SampleRate',fs);

Automotive radars are generally mounted on vehicles, so they are often in motion. This example
assumes the radar is traveling at a speed of 100 km/h along x-axis. So the target car is approaching
the radar at a relative speed of 4 km/h.

radar_speed = 100*1000/3600;
radarmotion = phased.Platform('InitialPosition',[0;0;0.5],...
 'Velocity',[radar_speed;0;0]);

Radar Signal Simulation

As briefly mentioned in earlier sections, an FMCW radar measures the range by examining the beat
frequency in the dechirped signal. To extract this frequency, a dechirp operation is performed by
mixing the received signal with the transmitted signal. After the mixing, the dechirped signal
contains only individual frequency components that correspond to the target range.

In addition, even though it is possible to extract the Doppler information from a single sweep, the
Doppler shift is often extracted among several sweeps because within one pulse, the Doppler
frequency is indistinguishable from the beat frequency. To measure the range and Doppler, an FMCW
radar typically performs the following operations:

1 The waveform generator generates the FMCW signal.

 Automotive Adaptive Cruise Control Using FMCW Technology

1-129

2 The transmitter and the antenna amplify the signal and radiate the signal into space.
3 The signal propagates to the target, gets reflected by the target, and travels back to the radar.
4 The receiving antenna collects the signal.
5 The received signal is dechirped and saved in a buffer.
6 Once a certain number of sweeps fill the buffer, the Fourier transform is performed in both range

and Doppler to extract the beat frequency as well as the Doppler shift. One can then estimate the
range and speed of the target using these results. Range and Doppler can also be shown as an
image and give an intuitive indication of where the target is in the range and speed domain.

The next section simulates the process outlined above. A total of 64 sweeps are simulated and a
range Doppler response is generated at the end.

During the simulation, a spectrum analyzer is used to show the spectrum of each received sweep as
well as its dechirped counterpart.

specanalyzer = dsp.SpectrumAnalyzer('SampleRate',fs,...
 'PlotAsTwoSidedSpectrum',true,...
 'Title','Spectrum for received and dechirped signal',...
 'ShowLegend',true);

Next, run the simulation loop.

rng(2012);
Nsweep = 64;
xr = complex(zeros(waveform.SampleRate*waveform.SweepTime,Nsweep));

for m = 1:Nsweep
 % Update radar and target positions
 [radar_pos,radar_vel] = radarmotion(waveform.SweepTime);
 [tgt_pos,tgt_vel] = carmotion(waveform.SweepTime);

 % Transmit FMCW waveform
 sig = waveform();
 txsig = transmitter(sig);

 % Propagate the signal and reflect off the target
 txsig = channel(txsig,radar_pos,tgt_pos,radar_vel,tgt_vel);
 txsig = cartarget(txsig);

 % Dechirp the received radar return
 txsig = receiver(txsig);
 dechirpsig = dechirp(txsig,sig);

 % Visualize the spectrum
 specanalyzer([txsig dechirpsig]);

 xr(:,m) = dechirpsig;
end

1 Featured Examples

1-130

From the spectrum scope, one can see that although the received signal is wideband (channel 1),
sweeping through the entire bandwidth, the dechirped signal becomes narrowband (channel 2).

Range and Doppler Estimation

Before estimating the value of the range and Doppler, it may be a good idea to take a look at the
zoomed range Doppler response of all 64 sweeps.

rngdopresp = phased.RangeDopplerResponse('PropagationSpeed',c,...
 'DopplerOutput','Speed','OperatingFrequency',fc,'SampleRate',fs,...
 'RangeMethod','FFT','SweepSlope',sweep_slope,...
 'RangeFFTLengthSource','Property','RangeFFTLength',2048,...
 'DopplerFFTLengthSource','Property','DopplerFFTLength',256);

clf;
plotResponse(rngdopresp,xr); % Plot range Doppler map
axis([-v_max v_max 0 range_max])
clim = caxis;

 Automotive Adaptive Cruise Control Using FMCW Technology

1-131

From the range Doppler response, one can see that the car in front is a bit more than 40 m away and
appears almost static. This is expected because the radial speed of the car relative to the radar is only
4 km/h, which translates to a mere 1.11 m/s.

There are many ways to estimate the range and speed of the target car. For example, one can choose
almost any spectral analysis method to extract both the beat frequency and the Doppler shift. This
example uses the root MUSIC algorithm to extract both the beat frequency and the Doppler shift.

As a side note, although the received signal is sampled at 150 MHz so the system can achieve the
required range resolution, after the dechirp, one only needs to sample it at a rate that corresponds to
the maximum beat frequency. Since the maximum beat frequency is in general less than the required
sweeping bandwidth, the signal can be decimated to alleviate the hardware cost. The following code
snippet shows the decimation process.

Dn = fix(fs/(2*fb_max));
for m = size(xr,2):-1:1
 xr_d(:,m) = decimate(xr(:,m),Dn,'FIR');
end
fs_d = fs/Dn;

To estimate the range, firstly, the beat frequency is estimated using the coherently integrated sweeps
and then converted to the range.

fb_rng = rootmusic(pulsint(xr_d,'coherent'),1,fs_d);
rng_est = beat2range(fb_rng,sweep_slope,c)

rng_est =

1 Featured Examples

1-132

 42.9976

Second, the Doppler shift is estimated across the sweeps at the range where the target is present.

peak_loc = val2ind(rng_est,c/(fs_d*2));
fd = -rootmusic(xr_d(peak_loc,:),1,1/tm);
v_est = dop2speed(fd,lambda)/2

v_est =

 1.0830

Note that both range and Doppler estimation are quite accurate.

Range Doppler Coupling Effect

One issue associated with linear FM signals, such as an FMCW signal, is the range Doppler coupling
effect. As discussed earlier, the target range corresponds to the beat frequency. Hence, an accurate
range estimation depends on an accurate estimate of beat frequency. However, the presence of
Doppler shift changes the beat frequency, resulting in a biased range estimation.

For the situation outlined in this example, the range error caused by the relative speed between the
target and the radar is

deltaR = rdcoupling(fd,sweep_slope,c)

deltaR =

 -0.0041

This error is so small that we can safely ignore it.

Even though the current design is achieving the desired performance, one parameter warrants
further attention. In the current configuration, the sweep time is about 7 microseconds. Therefore,
the system needs to sweep a 150 MHz band within a very short period. Such an automotive radar
may not be able to meet the cost requirement. Besides, given the velocity of a car, there is no need to
make measurements every 7 microseconds. Hence, automotive radars often use a longer sweep time.
For example, the waveform used in [2] has the same parameters as the waveform designed in this
example except a sweep time of 2 ms.

A longer sweep time makes the range Doppler coupling more prominent. To see this effect, first
reconfigure the waveform to use 2 ms as the sweep time.

waveform_tr = clone(waveform);
release(waveform_tr);
tm = 2e-3;
waveform_tr.SweepTime = tm;
sweep_slope = bw/tm;

Now calculate the range Doppler coupling.

deltaR = rdcoupling(fd,sweep_slope,c)

 Automotive Adaptive Cruise Control Using FMCW Technology

1-133

deltaR =

 -1.1118

A range error of 1.14 m can no longer be ignored and needs to be compensated. Naturally, one may
think of doing so following the same procedure outlined in earlier sections, estimating both range and
Doppler, figuring out the range Doppler coupling from the Doppler shift, and then remove the error
from the estimate.

Unfortunately this process doesn't work very well with the long sweep time. The longer sweep time
results in a lower sampling rate across the sweeps, thus reducing the radar's capability of
unambiguously detecting high speed vehicles. For instance, using a sweep time of 2 ms, the
maximum unambiguous speed the radar system can detect using the traditional Doppler processing is

v_unambiguous = dop2speed(1/(2*tm),lambda)/2

v_unambiguous =

 0.4870

The unambiguous speed is only 0.48 m/s, which means that the relative speed, 1.11 m/s, cannot be
unambiguously detected. This means that not only the target car will appear slower in Doppler
processing, but the range Doppler coupling also cannot be correctly compensated.

One way to resolve such ambiguity without Doppler processing is to adopt a triangle sweep pattern.
Next section shows how the triangle sweep addresses the issue.

Triangular Sweep

In a triangular sweep, there are one up sweep and one down sweep to form one period, as shown in
the following figure.

The two sweeps have the same slope except different signs. From the figure, one can see that the
presence of Doppler frequency, , affects the beat frequencies (and) differently in up and

1 Featured Examples

1-134

down sweeps. Hence by combining the beat frequencies from both up and down sweep, the coupling
effect from the Doppler can be averaged out and the range estimate can be obtained without
ambiguity.

First, set the waveform to use triangular sweep.

waveform_tr.SweepDirection = 'Triangle';

Now simulate the signal return. Because of the longer sweep time, fewer sweeps (16 vs. 64) are
collected before processing.

Nsweep = 16;
xr = helperFMCWSimulate(Nsweep,waveform_tr,radarmotion,carmotion,...
 transmitter,channel,cartarget,receiver);

The up sweep and down sweep are processed separately to obtain the beat frequencies
corresponding to both up and down sweep.

fbu_rng = rootmusic(pulsint(xr(:,1:2:end),'coherent'),1,fs);
fbd_rng = rootmusic(pulsint(xr(:,2:2:end),'coherent'),1,fs);

Using both up sweep and down sweep beat frequencies simultaneously, the correct range estimate is
obtained.

rng_est = beat2range([fbu_rng fbd_rng],sweep_slope,c)

rng_est =

 42.9658

Moreover, the Doppler shift and the velocity can also be recovered in a similar fashion.

fd = -(fbu_rng+fbd_rng)/2;
v_est = dop2speed(fd,lambda)/2

v_est =

 1.1114

The estimated range and velocity match the true values, 43 m and 1.11 m/s, very well.

Two-ray Propagation

To complete the discussion, in reality, the actual signal propagation between the radar and the target
vehicle is more complicated than what is modeled so far. For example, the radio wave can also arrive
at the target vehicle via reflections. A simple yet widely used model to describe such a multipath
scenario is a two-ray model, where the signal propagates from the radar to the target vehicle via two
paths, one direct path and one reflected path off the road, as shown in the following figure.

 Automotive Adaptive Cruise Control Using FMCW Technology

1-135

The reflection off the road impacts the phase of the signal and the receiving signal at the target
vehicle is a coherent combination of the signals via the two paths. Same thing happens on the return
trip too where the reflected signal off the target vehicle travels back to the radar. Hence depending
on the distance between the vehicles, the signals from different paths may add constructively or
destructively, making signal strength fluctuating over time. Such fluctuation can pose some challenge
in the successive detection stage.

To showcase the multipath effect, next section uses the two ray channel model to propagate the
signal between the radar and the target vehicle.

txchannel = phased.TwoRayChannel('PropagationSpeed',c,...
 'OperatingFrequency',fc,'SampleRate',fs);
rxchannel = phased.TwoRayChannel('PropagationSpeed',c,...
 'OperatingFrequency',fc,'SampleRate',fs);
Nsweep = 64;
xr = helperFMCWTwoRaySimulate(Nsweep,waveform,radarmotion,carmotion,...
 transmitter,txchannel,rxchannel,cartarget,receiver);
plotResponse(rngdopresp,xr); % Plot range Doppler map
axis([-v_max v_max 0 range_max]);
caxis(clim);

1 Featured Examples

1-136

With all settings remaining same, the comparison of the resulting range-Doppler map with two-ray
propagation and the range-Doppler map obtained before with a line of sight (LOS) propagation
channel suggests that the signal strength dropped almost 40 dB, which is significant. Therefore, such
effect must be considered during the design. One possible choice is to form a very sharp beam on the
vertical direction to null out the reflections.

Summary

This example shows how to use FMCW signal to perform range and Doppler estimation in an
automotive automatic cruise control application. The example also shows how to generate a range
Doppler map from the received signal and discussed how to use triangle sweep to compensate for the
range Doppler coupling effect for the FMCW signal. Finally, the effect on the signal level due to the
multipath propagation is discussed.

References

[1] Karnfelt, C. et al.. 77 GHz ACC Radar Simulation Platform, IEEE International Conferences on
Intelligent Transport Systems Telecommunications (ITST), 2009.

[2] Rohling, H. and M. Meinecke. Waveform Design Principle for Automotive Radar Systems,
Proceedings of CIE International Conference on Radar, 2001.

 Automotive Adaptive Cruise Control Using FMCW Technology

1-137

Radar Signal Simulation and Processing for Automated Driving
This example shows how to model a radar's hardware, signal processing, and propagation
environment for a driving scenario. First you model a highway scenario using Automated Driving
Toolbox™. Then, you develop a model of the radar transmit and receive hardware, signal processing
and tracker using Radar Toolbox™. Finally, you simulate multipath propagation effects on the radar
model.

Introduction

You can model vehicle motion by using the drivingScenario object from Automated Driving
Toolbox. The vehicle ground truth can then be used as an input to the radar model to generate
synthetic sensor detections. For an example of this workflow, see “Simulate Radar Ghosts due to
Multipath Return” on page 1-44. The automotive radar used in this example uses a statistical model
that is parameterized according to high-level radar specifications. The generic radar architecture
modeled in this example does not include specific antenna configurations, waveforms, or unique
channel propagation characteristics. When designing an automotive radar, or when a radar's specific
architecture is known, using a radar model that includes this additional information is recommended.

Radar Toolbox enables you to evaluate different radar architectures. You can explore different
transmit and receive array configurations, waveforms, and signal processing chains. You can also
evaluate your designs against different channel models to assess their robustness to different
environmental conditions. This modeling helps you to identify the specific design that best fits your
application requirements.

In this example, you learn how to define a radar model from a set of system requirements for a long-
range radar. You then simulate a driving scenario to generate detections from your radar model. A
tracker is used to process these detections to generate precise estimates of the position and velocity
of the vehicles detected by your automotive radar.

Calculate Radar Parameters from Long-Range Radar Requirements

The radar parameters are defined for the frequency-modulated continuous wave (FMCW) waveform,
as described in the example “Automotive Adaptive Cruise Control Using FMCW Technology” on page
1-126. The radar operates at a center frequency of 77 GHz. This frequency is commonly used by
automotive radars. For long-range operation, the radar must detect vehicles at a maximum range of
250-300 meters in front of the ego vehicle. The radar is required to resolve objects in range that are
at least 1 meter apart. Because this is a forward-facing radar application, the radar also needs to
handle targets with large closing speeds, as high as 230 km/hr.

The radar is designed to use an FMCW waveform. These waveforms are common in automotive
applications because they enable range and Doppler estimation through computationally efficient FFT
operations. For illustration purpose, in this example, the radar is configured to a maximum range of
100 meters.

% Set random number generator for repeatable results
rng(2017);

% Compute hardware parameters from specified long-range requirements
fc = 77e9; % Center frequency (Hz)
c = physconst('LightSpeed'); % Speed of light in air (m/s)
lambda = freq2wavelen(fc,c); % Wavelength (m)

% Set the chirp duration to be 5 times the max range requirement

1 Featured Examples

1-138

rangeMax = 100; % Maximum range (m)
tm = 5*range2time(rangeMax,c); % Chirp duration (s)

% Determine the waveform bandwidth from the required range resolution
rangeRes = 1; % Desired range resolution (m)
bw = range2bw(rangeRes,c); % Corresponding bandwidth (Hz)

% Set the sampling rate to satisfy both the range and velocity requirements
% for the radar
sweepSlope = bw/tm; % FMCW sweep slope (Hz/s)
fbeatMax = range2beat(rangeMax,sweepSlope,c); % Maximum beat frequency (Hz)

vMax = 230*1000/3600; % Maximum Velocity of cars (m/s)
fdopMax = speed2dop(2*vMax,lambda); % Maximum Doppler shift (Hz)

fifMax = fbeatMax+fdopMax; % Maximum received IF (Hz)
fs = max(2*fifMax,bw); % Sampling rate (Hz)

% Configure the FMCW waveform using the waveform parameters derived from
% the long-range requirements
waveform = phased.FMCWWaveform('SweepTime',tm,'SweepBandwidth',bw,...
 'SampleRate',fs,'SweepDirection','Up');
if strcmp(waveform.SweepDirection,'Down')
 sweepSlope = -sweepSlope;
end
Nsweep = 192;
sig = waveform();

Model Automotive Radar Transceiver

The radar uses an isotropic element to transmit and a uniform linear array (ULA) to receive the radar
waveforms. Using a linear array enables the radar to estimate the azimuthal direction of the reflected
energy received from the target vehicles. The long-range radar needs to detect targets across a
coverage area that spans 15 degrees in front of the ego vehicle. A 6-element receive array satisfies
this requirement by providing a 17-degree half-power beamwidth. On transmit, the radar uses only a
single array element, enabling it to cover a larger area than on receive.

% Model the antenna element
antElmnt = phased.IsotropicAntennaElement('BackBaffled',true);

% Construct the receive array
Ne = 6;
rxArray = phased.ULA('Element',antElmnt,'NumElements',Ne,...
 'ElementSpacing',lambda/2);

% Half-power beamwidth of the receive array
hpbw = beamwidth(rxArray,fc,'PropagationSpeed',c)

hpbw = 17.1800

Model the radar transmitter for a single transmit channel, and model a receiver preamplifier for each
receive channel, using the parameters defined in the example “Automotive Adaptive Cruise Control
Using FMCW Technology” on page 1-126.

antAperture = 6.06e-4; % Antenna aperture (m^2)
antGain = aperture2gain(antAperture,lambda); % Antenna gain (dB)

txPkPower = db2pow(5)*1e-3; % Tx peak power (W)

 Radar Signal Simulation and Processing for Automated Driving

1-139

txGain = antGain; % Tx antenna gain (dB)

rxGain = antGain; % Rx antenna gain (dB)
rxNF = 4.5; % Receiver noise figure (dB)

% Waveform transmitter
transmitter = phased.Transmitter('PeakPower',txPkPower,'Gain',txGain);

% Radiator for single transmit element
radiator = phased.Radiator('Sensor',antElmnt,'OperatingFrequency',fc);

% Collector for receive array
collector = phased.Collector('Sensor',rxArray,'OperatingFrequency',fc);

% Receiver preamplifier
receiver = phased.ReceiverPreamp('Gain',rxGain,'NoiseFigure',rxNF,...
 'SampleRate',fs);

% Define radar
radar = radarTransceiver('Waveform',waveform,'Transmitter',transmitter,...
 'TransmitAntenna',radiator,'ReceiveAntenna',collector,'Receiver',receiver);

Define Radar Signal Processing Chain

The radar collects multiple sweeps of the waveform on each of the linear phased array antenna
elements. These collected sweeps form a data cube, which is defined in “Radar Data Cube”. These
sweeps are coherently processed along the fast- and slow-time dimensions of the data cube to
estimate the range and Doppler of the vehicles.

Estimate the direction-of-arrival of the received signals using a root MUSIC estimator. A beamscan is
also used for illustrative purposes to help visualize the spatial distribution of the received signal
energy.

% Direction-of-arrival estimator for linear phased array signals
doaest = phased.RootMUSICEstimator(...
 'SensorArray',rxArray,...
 'PropagationSpeed',c,'OperatingFrequency',fc,...
 'NumSignalsSource','Property','NumSignals',1);

% Scan beams in front of ego vehicle for range-angle image display
angscan = -80:80;
beamscan = phased.PhaseShiftBeamformer('Direction',[angscan;0*angscan],...
 'SensorArray',rxArray,'OperatingFrequency',fc);

% Form forward-facing beam to detect objects in front of the ego vehicle
beamformer = phased.PhaseShiftBeamformer('SensorArray',rxArray,...
 'PropagationSpeed',c,'OperatingFrequency',fc,'Direction',[0;0]);

Use the phased.RangeDopplerResponse object to perform the range and Doppler processing on
the radar data cubes. Use a Hanning window to suppress the large sidelobes produced by the
vehicles when they are close to the radar.

Nft = waveform.SweepTime*waveform.SampleRate; % Number of fast-time samples
Nst = Nsweep; % Number of slow-time samples
Nr = 2^nextpow2(Nft); % Number of range samples
Nd = 2^nextpow2(Nst); % Number of Doppler samples
rngdopresp = phased.RangeDopplerResponse('RangeMethod','FFT',...
 'DopplerOutput','Speed','SweepSlope',sweepSlope,...

1 Featured Examples

1-140

 'RangeFFTLengthSource','Property','RangeFFTLength',Nr,...
 'RangeWindow','Hann',...
 'DopplerFFTLengthSource','Property','DopplerFFTLength',Nd,...
 'DopplerWindow','Hann',...
 'PropagationSpeed',c,'OperatingFrequency',fc,'SampleRate',fs);

Identify detections in the processed range and Doppler data by using a constant false alarm rate
(CFAR) detector. CFAR detectors estimate the background noise level of the received radar data.
Detections are found at locations where the signal power exceeds the estimated noise floor by a
certain threshold. Low threshold values result in a higher number of reported false detections due to
environmental noise. Increasing the threshold produces fewer false detections, but also reduces the
probability of detection of an actual target in the scenario. For more information on CFAR detection,
see the example .

% Guard cell and training regions for range dimension
nGuardRng = 4;
nTrainRng = 4;
nCUTRng = 1+nGuardRng+nTrainRng;

% Guard cell and training regions for Doppler dimension
dopOver = round(Nd/Nsweep);
nGuardDop = 4*dopOver;
nTrainDop = 4*dopOver;
nCUTDop = 1+nGuardDop+nTrainDop;

cfar = phased.CFARDetector2D('GuardBandSize',[nGuardRng nGuardDop],...
 'TrainingBandSize',[nTrainRng nTrainDop],...
 'ThresholdFactor','Custom','CustomThresholdFactor',db2pow(13),...
 'NoisePowerOutputPort',true,'OutputFormat','Detection index');

% Perform CFAR processing over all of the range and Doppler cells
freqs = ((0:Nr-1)'/Nr-0.5)*fs;
rnggrid = beat2range(freqs,sweepSlope);
iRngCUT = find(rnggrid>0);
iRngCUT = iRngCUT((iRngCUT>=nCUTRng)&(iRngCUT<=Nr-nCUTRng+1));
iDopCUT = nCUTDop:(Nd-nCUTDop+1);
[iRng,iDop] = meshgrid(iRngCUT,iDopCUT);
idxCFAR = [iRng(:) iDop(:)]';

% Perform clustering algorithm to group detections
clusterer = clusterDBSCAN('Epsilon',2);

The phased.RangeEstimator and phased.DopplerEstimator objects convert the locations of
the detections found in the range-Doppler data into measurements and their corresponding
measurement variances. These estimators fit quadratic curves to the range-Doppler data to estimate
the peak location of each detection. The resulting measurement resolutions are a fraction of the
range and Doppler sampling of the data.

The root-mean-square (RMS) range resolution of the transmitted waveform is needed to compute the
variance of the range measurements. The Rayleigh range resolution for the long-range radar was
defined previously as 1 meter. The Rayleigh resolution is the minimum separation at which two
unique targets can be resolved. This value defines the distance between range resolution cells for the
radar. However, the variance of the target within a resolution cell is determined by the waveform's
RMS resolution. For an LFM chirp waveform, the relationship between the Rayleigh resolution and
the RMS resolution is given by [1].

 Radar Signal Simulation and Processing for Automated Driving

1-141

σRMS = 12ΔRayleigh

where σRMS is the RMS range resolution and ΔRayleigh is the Rayleigh range resolution.

The variance of the Doppler measurements depends on the number of sweeps processed.

Now, create the range and Doppler estimation objects using the parameters previously defined.

rmsRng = sqrt(12)*rangeRes;
rngestimator = phased.RangeEstimator('ClusterInputPort',true,...
 'VarianceOutputPort',true,'NoisePowerSource','Input port',...
 'RMSResolution',rmsRng);

dopestimator = phased.DopplerEstimator('ClusterInputPort',true,...
 'VarianceOutputPort',true,'NoisePowerSource','Input port',...
 'NumPulses',Nsweep);

To further improve the precision of the estimated vehicle locations, pass the radar's detections to a
tracker. Configure the tracker to use an extended Kalman filter (EKF), which converts the spherical
radar measurements into the ego vehicle's Cartesian coordinate frame. Also configure the tracker to
use constant velocity dynamics for the detected vehicles. By comparing vehicle detections over
multiple measurement time intervals, the tracker further improves the accuracy of the vehicle
positions and provides vehicle velocity estimates.

tracker = radarTracker('FilterInitializationFcn',@initcvekf,...
 'AssignmentThreshold',50);

Model Free Space Propagation Channel

Use the free space channel to model the propagation of the transmitted and received radar signals.

In a free space model, the radar energy propagates along a direct line-of-sight between the radar and
the target vehicles, as shown in the following illustration.

Simulate the Driving Scenario

Create a highway driving scenario with three vehicles traveling in the vicinity of the ego vehicle. The
vehicles are modeled as cuboids, and have different velocities and positions defined in the driving
scenario. The ego vehicle is moving with a velocity of 80 km/hr and the other three cars are moving at
110 km/hr, 100 km/hr, and 130 km/hr respectively. For details on modeling a driving scenario see the
example . The radar sensor is mounted on the front of the ego vehicle.

To create the driving scenario, use the helperAutoDrivingRadarSigProc function. To examine
the contents of this function, use the edit('helperAutoDrivingRadarSigProc') command.

1 Featured Examples

1-142

% Create driving scenario
[scenario,egoCar,radarParams] = ...
 helperAutoDrivingRadarSigProc('Setup Scenario',c,fc);

The following loop uses the drivingScenario object to advance the vehicles in the scenario. At
every simulation time step, a radar data cube is assembled by collecting 192 sweeps of the radar
waveform. The assembled data cube is then processed in range and Doppler. The range and Doppler
processed data is then beamformed, and CFAR detection is performed on the beamformed data.
Range, radial speed, and direction of arrival measurements are estimated for the CFAR detections.
These detections are then assembled into objectDetection objects, which are then processed by
the radarTracker object.

% Initialize display for driving scenario example
helperAutoDrivingRadarSigProc('Initialize Display',egoCar,radarParams,...
 rxArray,fc,vMax,rangeMax);

tgtProfiles = actorProfiles(scenario);
tgtProfiles = tgtProfiles(2:end);
tgtHeight = [tgtProfiles.Height];

% Run the simulation loop
sweepTime = waveform.SweepTime;
while advance(scenario)

 % Get the current scenario time
 time = scenario.SimulationTime;

 % Get current target poses in ego vehicle's reference frame
 tgtPoses = targetPoses(egoCar);
 tgtPos = reshape([tgtPoses.Position],3,[]);
 % Position point targets at half of each target's height
 tgtPos(3,:) = tgtPos(3,:)+0.5*tgtHeight;
 tgtVel = reshape([tgtPoses.Velocity],3,[]);

 % Assemble data cube at current scenario time
 Xcube = zeros(Nft,Ne,Nsweep);
 for m = 1:Nsweep

 ntgt = size(tgtPos,2);
 tgtStruct = struct('Position',mat2cell(tgtPos(:).',1,repmat(3,1,ntgt)),...
 'Velocity',mat2cell(tgtVel(:).',1,repmat(3,1,ntgt)),...
 'Signature',{rcsSignature,rcsSignature,rcsSignature});
 rxsig = radar(tgtStruct,time+(m-1)*sweepTime);
 % Dechirp the received signal
 rxsig = dechirp(rxsig,sig);

 % Save sweep to data cube
 Xcube(:,:,m) = rxsig;

 % Move targets forward in time for next sweep
 tgtPos = tgtPos+tgtVel*sweepTime;
 end

 % Calculate the range-Doppler response
 [Xrngdop,rnggrid,dopgrid] = rngdopresp(Xcube);

 % Beamform received data

 Radar Signal Simulation and Processing for Automated Driving

1-143

 Xbf = permute(Xrngdop,[1 3 2]);
 Xbf = reshape(Xbf,Nr*Nd,Ne);
 Xbf = beamformer(Xbf);
 Xbf = reshape(Xbf,Nr,Nd);

 % Detect targets
 Xpow = abs(Xbf).^2;
 [detidx,noisepwr] = cfar(Xpow,idxCFAR);

 % Cluster detections
 [~,clusterIDs] = clusterer(detidx.');

 % Estimate azimuth, range, and radial speed measurements
 [azest,azvar,snrdB] = ...
 helperAutoDrivingRadarSigProc('Estimate Angle',doaest,...
 conj(Xrngdop),Xbf,detidx,noisepwr,clusterIDs);
 azvar = azvar+radarParams.RMSBias(1)^2;

 [rngest,rngvar] = rngestimator(Xbf,rnggrid,detidx,noisepwr,clusterIDs);
 rngvar = rngvar+radarParams.RMSBias(2)^2;

 [rsest,rsvar] = dopestimator(Xbf,dopgrid,detidx,noisepwr,clusterIDs);

 % Convert radial speed to range rate for use by the tracker
 rrest = -rsest;
 rrvar = rsvar;
 rrvar = rrvar+radarParams.RMSBias(3)^2;

 % Assemble object detections for use by tracker
 numDets = numel(rngest);
 dets = cell(numDets,1);
 for iDet = 1:numDets
 dets{iDet} = objectDetection(time,...
 [azest(iDet) rngest(iDet) rrest(iDet)]',...
 'MeasurementNoise',diag([azvar(iDet) rngvar(iDet) rrvar(iDet)]),...
 'MeasurementParameters',{radarParams},...
 'ObjectAttributes',{struct('SNR',snrdB(iDet))});
 end

 % Track detections
 tracks = tracker(dets,time);

 % Update displays
 helperAutoDrivingRadarSigProc('Update Display',egoCar,dets,tracks,...
 dopgrid,rnggrid,Xbf,beamscan,Xrngdop);

 % Collect free space channel metrics
 metricsFS = helperAutoDrivingRadarSigProc('Collect Metrics',...
 radarParams,tgtPos,tgtVel,dets);
end

1 Featured Examples

1-144

The previous figure shows the radar detections and tracks for the 3 target vehicles at 1.1 seconds of
simulation time. The plot on the upper-left side shows the chase camera view of the driving scenario
from the perspective of the ego vehicle (shown in blue). For reference, the ego vehicle is traveling at
80 km/hr and the other three cars are traveling at 110 km/hr (orange car), 100 km/hr (yellow car),
and 130 km/hr (purple car).

The right side of the figure shows the bird's-eye plot, which presents a "top down" perspective of the
scenario. All of the vehicles, detections, and tracks are shown in the ego vehicle's coordinate
reference frame. The estimated signal-to-noise ratio (SNR) for each radar measurement is printed
next to each detection. The vehicle location estimated by the tracker is shown in the plot using black
squares with text next to them indicating each track's ID. The tracker's estimated velocity for each
vehicle is shown as a black line pointing in the direction of the vehicle's velocity. The length of the
line corresponds to the estimated speed, with longer lines denoting vehicles with higher speeds
relative to the ego vehicle. The purple car's track (ID2) has the longest line while the yellow car's
track (ID1) has the shortest line. The tracked speeds are consistent with the modeled vehicle speeds
previously listed.

The two plots on the lower-left side show the radar images generated by the signal processing. The
upper plot shows how the received radar echoes from the target vehicles are distributed in range and
radial speed. Here, all three vehicles are observed. The measured radial speeds correspond to the
velocities estimated by the tracker, as shown in the bird's-eye plot. The lower plot shows how the
received target echoes are spatially distributed in range and angle. Again, all three targets are
present, and their locations match what is shown in the bird's-eye plot.

Due to its close proximity to the radar, the orange car can still be detected despite the large
beamforming losses due to its position well outside of the beam's 3 dB beamwidth. These detections
have generated a track (ID3) for the orange car.

 Radar Signal Simulation and Processing for Automated Driving

1-145

Model a Multipath Channel

The previous driving scenario simulation used free space propagation. This is a simple model that
models only direct line-of-sight propagation between the radar and each of the targets. In reality, the
radar signal propagation is much more complex, involving reflections from multiple obstacles before
reaching each target and returning back to the radar. This phenomenon is known as multipath
propagation. The following illustration shows one such case of multipath propagation, where the
signal impinging the target is coming from two directions: line-of-sight and a single bounce from the
road surface.

The overall effect of multipath propagation is that the received radar echoes can interfere
constructively and destructively. This constructive and destructive interference results from path
length differences between the various signal propagation paths. As the distance between the radar
and the vehicles changes, these path length differences also change. When the differences between
these paths result in echoes received by the radar that are almost 180 degrees out of phase, the
echoes destructively combine, and the radar makes no detection for that range.

Replace the free space channel model with a two-ray channel model to demonstrate the propagation
environment shown in the previous illustration. Reuse the remaining parameters in the driving
scenario and radar model, and run the simulation again.

% Reset the driving scenario
[scenario,egoCar,radarParams,pointTgts] = ...
 helperAutoDrivingRadarSigProc('Setup Scenario',c,fc);

% Run the simulation again, now using the two-ray channel model
metrics2Ray = helperAutoDrivingRadarSigProc('Two Ray Simulation',...
 c,fc,rangeMax,vMax,Nsweep,... % Waveform parameters
 rngdopresp,beamformer,cfar,idxCFAR,clusterer,... % Signal processing
 rngestimator,dopestimator,doaest,beamscan,tracker,... % Estimation
 radar,sig); % Hardware models

1 Featured Examples

1-146

The previous figure shows the chase plot, bird's-eye plot, and radar images at 1.1 seconds of
simulation time, just as was shown for the free space channel propagation scenario. Comparing these
two figures, observe that for the two-ray channel, no detection is present for the purple car at this
simulation time. This detection loss is because the path length differences for this car are
destructively interfering at this range, resulting in a total loss of detection.

Plot the SNR estimates generated from the CFAR processing against the purple car's range estimates
from the free space and two-ray channel simulations.

helperAutoDrivingRadarSigProc('Plot Channels',metricsFS,metrics2Ray);

 Radar Signal Simulation and Processing for Automated Driving

1-147

As the car approaches a range of 72 meters from the radar, a large loss in the estimated SNR from
the two-ray channel is observed with respect to the free space channel. It is near this range that the
multipath interference combines destructively, resulting in a loss in signal detections. However,
observe that the tracker is able to coast the track during these times of signal loss and provide a
predicted position and velocity for the purple car.

Summary

This example demonstrated how to model an automotive radar's hardware and signal processing
using Radar Toolbox. You also learned how to integrate this radar model with the Automated Driving
Toolbox driving scenario simulation. First you generated synthetic radar detections. Then you
processed these detections further by using a tracker to generate precise position and velocity
estimates in the ego vehicle's coordinate frame. Finally, you learned how to simulate multipath
propagation effects.

The presented workflow enables you to understand how your radar architecture design decisions
impact higher-level system requirements. Using this workflow enables you select a radar design that
satisfies your unique application requirements.

Reference

[1] Richards, Mark. Fundamentals of Radar Signal Processing. New York: McGraw Hill, 2005.

1 Featured Examples

1-148

Adaptive Tracking of Maneuvering Targets with Managed Radar
This example shows how to use radar resource management to efficiently track multiple maneuvering
targets. Tracking maneuvering targets requires the radar to revisit the targets more frequently than
tracking non-maneuvering targets. An Interacting Multiple Model (IMM) filter estimates when the
target is maneuvering. This estimate helps to manage the radar revisit time and therefore enhances
the tracking. This example uses the Radar Toolbox™ for the radar model and Sensor Fusion and
Tracking Toolbox™ for the tracking.

Introduction

Multifunction radars can search for targets, confirm new tracks, and revisit tracks to update the
state. To perform these functions, a multifunction radar is often managed by a resource manager that
creates radar tasks for search, confirmation, and tracking. These tasks are scheduled according to
priority and time so that, at each time step, the multifunction radar can point its beam in a desired
direction. The “Search and Track Scheduling for Multifunction Phased Array Radar” on page 1-166
example shows a multifunction phased-array radar managed with a resource manager.

In this example, we extend the “Adaptive Tracking of Maneuvering Targets with Managed Radar” on
page 1-149 example to the case of multiple maneuvering targets. There are two conflicting
requirements for a radar used to track maneuvering targets:

1 The number of targets and their initial location are typically not known in advance. Therefore,
the radar must continuously search the area of interest to find the targets. Also, the radar needs
to detect and establish a track on each target as soon as it enters the radar coverage area.

2 The time period of target maneuvering is unknown in advance. If it is known that targets are not
maneuvering, the radar can revisit the targets infrequently. However, since the maneuver start
and end times are unknown, the radar must revisit each track frequently enough to be able to
recognize when the maneuver starts and ends.

The radar must balance between providing enough beams centered on the tracked targets and
leaving enough time to search for new targets. One approach is to simply define a revisit rate on each
tracked target regardless of its maneuvering status and leave the remaining time for new target
searching. This radar management scheme is sometimes referred to as Active Tracking [1]. As more
targets become tracked, the radar can either perform fewer search tasks or it can track each target
less frequently. Clearly, if the number of targets is large, the radar can be overwhelmed.

Active tracking treats all the tracks in the same way, which makes it a mode-based resource
management algorithm. A more sophisticated way to manage the radar is based on the properties of
each track. For example, use track properties such as the size of state uncertainty covariance,
whether the track is maneuvering, and how fast it is moving towards an asset the radar site protects.
When such properties are used, the radar resource management is referred to as Adaptive Tracking
[1].

In this example, you compare the results of Active Tracking and Adaptive Tracking when the radar
adapts based on estimated track maneuver.

Define Scenario and Radar Model

You define a scenario and a radar with update rate of 20 Hz, which means that the radar has 20
beams per second allocated for either search, confirmation, or tracking. You load the benchmark
trajectories used in the “Benchmark Trajectories for Multi-Object Tracking” (Sensor Fusion and
Tracking Toolbox) example. There are six benchmark trajectories and you define a trajectory for each

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-149

one. From the figure below, the six platforms follow non-maneuvering legs interspersed with
maneuvering legs. You can view the trajectories in the figure below.

% Create scenario
updateRate = 20;
scenario = trackingScenario('UpdateRate',updateRate);
% Add the benchmark trajectories
load('BenchmarkTrajectories.mat','-mat');
platform(scenario,'Trajectory',v1Trajectory);
platform(scenario,'Trajectory',v2Trajectory);
platform(scenario,'Trajectory',v3Trajectory);
platform(scenario,'Trajectory',v4Trajectory);
platform(scenario,'Trajectory',v5Trajectory);
platform(scenario,'Trajectory',v6Trajectory);

% Create visualization
f = figure;
mp = uipanel('Parent',f,'Title','Theater Plot','FontSize',12,...
 'BackgroundColor','white','Position',[.01 .25 .98 .73]);
tax = axes(mp,'ZDir','reverse');

% Visualize scenario
thp = theaterPlot('Parent',tax,'AxesUnits',["km","km","km"],'XLimits',[0 85000],'YLimits',[-45000 70000],'ZLimits',[-10000 1000]);
plp = platformPlotter(thp, 'DisplayName', 'Platforms');
pap = trajectoryPlotter(thp, 'DisplayName', 'Trajectories', 'LineWidth', 1);
dtp = detectionPlotter(thp, 'DisplayName', 'Detections');
cvp = coveragePlotter(thp, 'DisplayName', 'Radar Coverage');
trp = trackPlotter(thp, 'DisplayName', 'Tracks', 'ConnectHistory', 'on', 'ColorizeHistory', 'on');
numPlatforms = numel(scenario.Platforms);
trajectoryPositions = cell(1,numPlatforms);
for i = 1:numPlatforms
 trajectoryPositions{i} = lookupPose(scenario.Platforms{i}.Trajectory,(0:0.1:185));
end
plotTrajectory(pap, trajectoryPositions);
view(tax,3)

1 Featured Examples

1-150

You define the radar using a helperManagedRadarDataGenerator object, which is an object
inherited from the radarDataGenerator System object. The
helperManagedRadarDataGenerator provides a probabilistic radar model and allows pointing the
radar to a certain direction. This setup enables the radar resource manager to schedule the radar for
searching, confirming, and tracking targets. The radar models electronic beams that have azimuth
scanning limits of [-90 60] degrees and elevation limits of [-9.9 0] degrees. Negative elevation angles
mean that the radar points the beam from the horizon up. Mount the radar on a new platform in the
scenario.

radar = helperManagedRadarDataGenerator(1, ...
 'ScanMode', 'Electronic', ...
 'UpdateRate', updateRate, ...
 'MountingLocation', [0 0 -15], ...
 'FieldOfView', [3;10], ...
 'AzimuthResolution', 1.5, ...
 'ElectronicAzimuthLimits', [-90 60], ...
 'ElectronicElevationLimits', [-9.9 0], ...
 'HasElevation', true, ...
 'DetectionCoordinates', 'Sensor spherical');
platform(scenario,'Position',[0 0 0],'Sensors',radar);

Define Tracker

After the radar detects objects, it feeds the detections to a tracker, which performs several
operations. The tracker maintains a list of tracks that are estimates of target states in the area of
interest. If a detection cannot be assigned to any track already maintained by the tracker, the tracker
initiates a new track. In most cases, whether the new track represents a true target or false target is

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-151

unclear. At first, a track is created with a tentative status. If enough detections are obtained, the
track becomes confirmed. Similarly, if no detections are assigned to a track, the track is coasted
(predicted without correction). If the track has a few missed updates, the tracker deletes the track.

In this example, you use a tracker that associates the detections to the tracks using a global nearest
neighbor (GNN) algorithm. To track the maneuvering targets, you define a
FilterInitializationFcn that initializes an Interacting Multiple Model (IMM) filter. The
initMPARIMM function uses two motion models: a constant-velocity model and a constant-turn rate
model. The trackingIMM (Sensor Fusion and Tracking Toolbox) filter is responsible for estimating
the probability of each model, which you can access from its ModelProbabilities property. In this
example, you classify a target as maneuvering when the probability of the constant-turn rate model is
higher than 0.6.

tracker = trackerGNN('FilterInitializationFcn',@initMPARIMM,...
 'ConfirmationThreshold',[2 3], 'DeletionThreshold',[5 5],...
 'HasDetectableTrackIDsInput',true,'AssignmentThreshold',150,...
 'MaxNumTracks',10,'MaxNumSensors',1);
posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];

Radar Resource Management

This section only briefly outlines the radar resource management, For more details, see the “Adaptive
Tracking of Maneuvering Targets with Managed Radar” on page 1-149 example.

Search Tasks

The search tasks are assigned deterministically in this example. A raster scan is used to cover the
desired airspace. If no other tasks exist, the radar scans the space one angular cell at a time. The size
of an angular cell is determined by the radar FieldOfView property and is bounded by the radar
ElectronicAzimuthLimits and ElectronicElevatonLimits properties.

azscanspan = diff(radar.ElectronicAzimuthLimits);
numazscan = floor(azscanspan/radar.FieldOfView(1))+1;
azscanangles = linspace(radar.ElectronicAzimuthLimits(1),radar.ElectronicAzimuthLimits(2),numazscan)+radar.MountingAngles(1);
elscanspan = diff(radar.ElectronicElevationLimits);
numelscan = floor(elscanspan/radar.FieldOfView(2))+1;
elscanangles = linspace(radar.ElectronicElevationLimits(1),radar.ElectronicElevationLimits(2),numelscan)+radar.MountingAngles(2);
[elscangrid,azscangrid] = meshgrid(elscanangles,azscanangles);
scanangles = [azscangrid(:) elscangrid(:)].';
searchq = struct('JobType','Search','BeamDirection',num2cell(scanangles,1),...
 'Priority',1000,'WaveformIndex',1);
current_search_idx = 1;

Track Tasks

Unlike search tasks, track tasks cannot be planned in advance. Instead, the resource manager creates
confirmation and tracking tasks based on the changing scenario. The main difference in this example
from the “Adaptive Tracking of Maneuvering Targets with Managed Radar” on page 1-149 example is
that the JobType for each track task can be either "TrackNonManeuvering" or
"TrackManeuvering". The distinction between the two types of tracking tasks enables you to
schedule tasks for each type of track at different revisit rates, making it an adaptive tracking
algorithm. Similar to search tasks, tracking tasks are also managed in a job queue.

trackq = repmat(struct('JobType',[],'BeamDirection',[],'Priority',3000,'WaveformIndex',[],...
 'Time',[],'Range',[],'TrackID',[]), 10, 1);
num_trackq_items = 0;

1 Featured Examples

1-152

Group search and tracking queues together in a structure for easier reference in the simulation loop.

jobq.SearchQueue = searchq;
jobq.SearchIndex = current_search_idx;
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;
jobq.PositionSelector = posSelector;
% Keep a reset state of jobq
resetJobQ = jobq;

Task Scheduling

In this example, for simplicity, the multifunction radar executes only one type of job within a small
time period, often referred to as a dwell, but can switch tasks at the beginning of each dwell. For
each dwell, the radar looks at all tasks that are due for execution and picks a confirmation or track
task if their time to run has come. Otherwise, the radar picks a search task. To control the time to run
tasks, you set the managerPreferences struct defined below. The highest revisit rate, which is
equal to the radar update rate, is given to the confirm task to guarantee that a confirmation beam
follows every new tentative track that exists. Similarly, you can control the revisit rate for non-
maneuvering and maneuvering targets. In this case, you choose the values of 1Hz and 4 Hz for non-
maneuvering and maneuvering targets, respectively. Because there are six targets while the radar
update rate is 20, if the targets are not maneuvering the radar should spend about 70% of the time in
search mode and 30% of the time in tracking mode. When new tracks are initialized and when the
tracker considers that the targets are maneuvering, the resource manager allocates more tracking
beams at the expense of search beams.

The Analyze Results section shows the results of other options.

managerPreferences = struct(...
 'Type', {"Search","Confirm","TrackNonManeuvering","TrackManeuvering"}, ...
 'RevisitRate', {0, updateRate, 1, 4}, ...
 'Priority', {1000, 3000, 1500, 2500});

Run the Scenario

During the simulation, the radar beam is depicted by blue or purple colors representing search and
track-related beams, respectively. You can also see the distribution of tasks between search and
specific tracks for the last second of simulation using the Resource Allocation in the Last Second
panel at the bottom of the figure. In the top figure, you can see the history of each track and compare
it to the trajectory.

% Create a radar resource allocation display
rp = uipanel('Parent',f,'Title','Resource Allocation in the Last Second','FontSize',12,...
 'BackgroundColor','white','Position',[.01 0.01 0.98 0.23]);
rax = axes(rp);

% Run the scenario
allocationType = helperAdaptiveTrackingSim(scenario, thp, rax, tracker, resetJobQ, managerPreferences);

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-153

Analyze Results

Analyze the radar task load and its division between search, confirmation, and tracking jobs. The
graph below shows that during most of the time the radar allocates about 70% search jobs and 30%
tracking jobs, which is as expected when the targets are not maneuvering. When the targets are
maneuvering, the resource manager adapts to allocate more tracking jobs. When more tracks are
maneuvering at the same time, there are more tracking jobs, as seen near the 700th time step for
example. The confirmation jobs occupy very little of the radar time because the tracker is configured
to confirm tracks after two detection associations in three attempts. Therefore, the confirmation or
rejection of tentative tracks is swift.

numSteps = numel(allocationType);
allocationSummary = zeros(3,numSteps);
for i = 1:numSteps
 for jobType = 1:3
 allocationSummary(jobType,i) = sum(allocationType(1,max(1,i-2*updateRate+1):i)==jobType)/min(i-1,2*updateRate);
 end
end
figure;
plot(1:numSteps,allocationSummary(:,1:numSteps))
title('Radar Allocation vs. Time Step');
xlabel('Time Step');
ylabel('Fraction of step in the last two seconds in each mode');
legend('Search','Confirmation','Tracking');
grid on

1 Featured Examples

1-154

Now you want to compare the result above with the result of Active Tracking at 1Hz track revisit
rate. The following figures show the tracking results and radar allocation graph for the Active
Tracking case. The tracking results show that some tracks were lost and broken, but the radar
resource allocation graph shows a similar 70% search and 30% tracking task division as in the case of
the Adaptive Tracking. You can obtain these results by executing the code sample below.

% Modify manager preferences to 1Hz revisit rate for both non-maneuvering and maneuvering targets
managerPreferences = struct(...
 'Type', {"Search","Confirm","TrackNonManeuvering","TrackManeuvering"}, ...
 'RevisitRate', {0, updateRate, 1, 1}, ...
 'Priority', {1000, 3000, 1500, 2500});
% Run the scenario
allocationType = helperAdaptiveTrackingSim(scenario, thp, rax, tracker, resetJobQ, managerPreferences);

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-155

1 Featured Examples

1-156

Clearly, a higher tracking revisit rate is needed for Active Tracking. The two graphs below show that
increasing the track revisit rate to 2Hz improves the tracking of maneuvering targets. However, the
cost is that the radar dedicates more than 50% of its time to tracking tasks even when the tracks are
not maneuvering. If the number of targets were greater, the radar would become overwhelmed.

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-157

1 Featured Examples

1-158

The previous results show that it is enough to revisit the maneuvering targets at a rate of 2Hz.
However, can Adaptive Tracking be used to reduce the revisit rate of non-maneuvering targets to
0.5Hz? The graphs below show that the tracking is still good. With this setting, the radar allocation
allows for 80%-90% of the time in search mode, leaving the radar with capacity to search and track
even more targets.

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-159

1 Featured Examples

1-160

Summary

This example shows how to use the combination of tracking and radar resource management to adapt
the revisit rate for maneuvering tracks. Adaptive tracking allows you to select revisit rate that is
appropriate for each target type and maneuvering status. As a result, the radar becomes more
efficient and can track a larger number of maneuvering targets.

References

[1] Alexander Charlish, Folker Hoffmann, Christoph Degen, and Isabel Schlangen, "The Development
from Adaptive to Cognitive Radar Resource Management", in IEEE Aerospace and Electronic Systems
Magazine, vol. 35, no. 6, pp. 8-19, 1 June 2020, doi: 10.1109/MAES.2019.2957847.

Supporting Functions

getCurrentRadarTask

Returns the radar task that is used for pointing the radar beam.

type('getCurrentRadarTask.m')

function [currentjob,jobq] = getCurrentRadarTask(jobq,current_time)

searchq = jobq.SearchQueue;
trackq = jobq.TrackQueue;
searchidx = jobq.SearchIndex;
num_trackq_items = jobq.NumTrackJobs;

% Update search queue index
searchqidx = mod(searchidx-1,numel(searchq))+1;

% Find the track job that is due and has the highest priority
readyidx = find([trackq(1:num_trackq_items).Time]<=current_time);
[~,maxpidx] = max([trackq(readyidx).Priority]);
taskqidx = readyidx(maxpidx);

% If the track job found has a higher priority, use that as the current job
% and increase the next search job priority since it gets postponed.
% Otherwise, the next search job due is the current job.
if ~isempty(taskqidx) % && trackq(taskqidx).Priority >= searchq(searchqidx).Priority
 currentjob = trackq(taskqidx);
 for m = taskqidx+1:num_trackq_items
 trackq(m-1) = trackq(m);
 end
 num_trackq_items = num_trackq_items-1;
 searchq(searchqidx).Priority = searchq(searchqidx).Priority+100;
else
 currentjob = searchq(searchqidx);
 searchidx = searchqidx+1;

end

jobq.SearchQueue = searchq;
jobq.SearchIndex = searchidx;
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

helperAdaptiveRadarSim

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-161

Runs the simulation

type('helperAdaptiveTrackingSim.m')

function allocationType = helperAdaptiveTrackingSim(scenario, thp, rax, tracker, resetJobQ, managerPreferences)
% Initialize variables
radar = scenario.Platforms{end}.Sensors{1};
updateRate = radar.UpdateRate;
resourceAllocation = nan(1,updateRate);
h = histogram(rax,resourceAllocation,'BinMethod','integers');
xlabel(h.Parent,'TrackID')
ylabel(h.Parent,'Num beams');
numSteps = updateRate * 185;
allocationType = nan(1,numSteps);
currentStep = 1;
restart(scenario);
reset(tracker);
% Return to a reset state of jobq
jobq = resetJobQ;

% Plotters and axes
plp = thp.Plotters(1);
dtp = thp.Plotters(3);
cvp = thp.Plotters(4);
trp = thp.Plotters(5);

% For repeatable results, set the random seed and revert it when done
s = rng(2020);
oc = onCleanup(@() rng(s));

% Main loop
while advance(scenario)
 time = scenario.SimulationTime;

 % Update ground truth display
 poses = platformPoses(scenario);
 plotPlatform(plp, reshape([poses.Position],3,[])');

 % Point the radar based on the scheduler current job
 [currentJob,jobq] = getCurrentRadarTask(jobq,time);
 currentStep = currentStep + 1;
 if currentStep > updateRate
 resourceAllocation(1:end-1) = resourceAllocation(2:updateRate);
 end
 if strcmpi(currentJob.JobType,'Search')
 detectableTracks = zeros(0,1,'uint32');
 resourceAllocation(min([currentStep,updateRate])) = 0;
 allocationType(currentStep) = 1;
 cvp.Color = [0 0 1];
 else
 detectableTracks = currentJob.TrackID;
 resourceAllocation(min([currentStep,updateRate])) = currentJob.TrackID;
 cvp.Color = [1 0 1];
 if strcmpi(currentJob.JobType,'Confirm')
 allocationType(currentStep) = 2;
 else
 allocationType(currentStep) = 3;
 end

1 Featured Examples

1-162

 end
 ra = resourceAllocation(~isnan(resourceAllocation));
 h.Data = ra;
 h.Parent.YLim = [0 updateRate];
 h.Parent.XTick = 0:max(ra);
 point(radar, currentJob.BeamDirection);
 plotCoverage(cvp, coverageConfig(scenario));

 % Collect detections and plot them
 detections = detect(scenario);
 if isempty(detections)
 meas = zeros(0,3);
 else
 dets = [detections{:}];
 meassph = reshape([dets.Measurement],3,[])';
 [x,y,z] = sph2cart(deg2rad(meassph(1)),deg2rad(meassph(2)),meassph(3));
 meas = (detections{1}.MeasurementParameters.Orientation*[x;y;z]+detections{1}.MeasurementParameters.OriginPosition)';
 end
 plotDetection(dtp, meas);

 % Track and plot tracks
 if isLocked(tracker) || ~isempty(detections)
 tracks = tracker(detections, time, detectableTracks);
 pos = getTrackPositions(tracks,jobq.PositionSelector);
 plotTrack(trp,pos,string([tracks.TrackID]));
 end

 % Manage resources for next jobs
 jobq = manageResource(detections,jobq,tracker,currentJob,time,managerPreferences);
end

initMPARIMM

Initializes the interacting multiple model filter used by the tracker.

type('initMPARIMM.m')

function imm = initMPARIMM(detection)

cvekf = initcvekf(detection);
cvekf.StateCovariance(2,2) = 1e6;
cvekf.StateCovariance(4,4) = 1e6;
cvekf.StateCovariance(6,6) = 1e6;

ctekf = initctekf(detection);
ctekf.StateCovariance(2,2) = 1e6;
ctekf.StateCovariance(4,4) = 1e6;
ctekf.StateCovariance(7,7) = 1e6;
ctekf.ProcessNoise(3,3) = 1e6; % Large noise for unknown angular acceleration

imm = trackingIMM('TrackingFilters', {cvekf;ctekf}, 'TransitionProbabilities', [0.99, 0.99]);

manageResources

Manages the job queue and creates new tasks based on the tracking results.

type('manageResource.m')

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-163

function jobq = manageResource(detections,jobq,tracker,current_job,current_time,managerPreferences)

trackq = jobq.TrackQueue;
num_trackq_items = jobq.NumTrackJobs;
if ~isempty(detections)
 detection = detections{1};
else
 detection = [];
end

% Execute current job
switch current_job.JobType
 case 'Search'
 % For search job, if there is a detection, establish tentative
 % track and schedule a confirmation job
 if ~isempty(detection)
 rng_est = detection.Measurement(3);
 revisit_time = current_time+1;
 allTracks = predictTracksToTime(tracker, 'all', revisit_time);

 % A search task can still find a track we already have. Define
 % a confirmation task only if it's a tentative track. There
 % could be more than one if there are false alarms.
 toConfirm = find(~[allTracks.IsConfirmed]);
 numToConfirm = numel(toConfirm);
 for i = 1:numToConfirm
 trackid = allTracks(toConfirm(i)).TrackID;
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'Confirm');
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 end
 end

 case 'Confirm'
 % For confirm job, if the detection is confirmed, establish a track
 % and create a track job corresponding to the revisit time
 if ~isempty(detection)
 trackid = current_job.TrackID;
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'TrackNonManeuvering');
 if ~isempty(job)
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 end
 end

 otherwise % Covers both types of track jobs
 % For track job, if there is a detection, update the track and
 % schedule a track job corresponding to the revisit time. If there
 % is no detection, predict and schedule a track job sooner so the
 % target is not lost.
 if ~isempty(detection)
 trackid = current_job.TrackID;
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'TrackNonManeuvering');
 if ~isempty(job)
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 end
 else

1 Featured Examples

1-164

 trackid = current_job.TrackID;
 job = revisitTrackJob(tracker, trackid, current_time, managerPreferences, 'TrackNonManeuvering');
 if ~isempty(job)
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = job;
 end
 end

end

jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;
end

function job = revisitTrackJob(tracker, trackID, currentTime, managerPreferences, jobType)
types = [managerPreferences.Type];
inTypes = strcmpi(jobType,types);
revisitTime = 1/managerPreferences(inTypes).RevisitRate + currentTime;
predictedTracks = predictTracksToTime(tracker,'All',revisitTime);

% If the track is not dropped, try to revisit it
allTrackIDs = [predictedTracks.TrackID];
if any(trackID == allTrackIDs)
 mdlProbs = getTrackFilterProperties(tracker, trackID, 'ModelProbabilities');
 if mdlProbs{1}(2) > 0.6
 jobType = 'TrackManeuvering';
 inTypes = strcmpi(jobType,types);
 revisitTime = 1/managerPreferences(inTypes).RevisitRate+currentTime;
 predictedTracks = predictTracksToTime(tracker,trackID,revisitTime);
 xpred = predictedTracks.State([1 3 5]);
 else
 xpred = predictedTracks(trackID == allTrackIDs).State([1 3 5]);
 end

 [phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
 job = struct('JobType',jobType,'Priority',3000,...
 'BeamDirection',rad2deg([phipred thetapred]),'WaveformIndex',1,'Time',revisitTime,...
 'Range',rpred,'TrackID',trackID);

else
 job = [];
end
end

 Adaptive Tracking of Maneuvering Targets with Managed Radar

1-165

Search and Track Scheduling for Multifunction Phased Array
Radar

This example shows how to simulate a multifunction phased array radar system. A multifunction
radar can perform jobs that usually require multiple traditional radars. Examples of traditional radars
are scanning radars, which are responsible for searching targets, and tracking radars, which are
responsible for tracking targets. In this example, the multifunction phased array radar performs both
scanning (searching) and tracking tasks. Based on the detections and tracks obtained from the
current echo, the radar decides what to do next to ensure that targets of interest are tracked and the
desired airspace is searched. The multifunction phased array radar works as a closed loop, including
features such as task scheduling, waveform selection, detection generation, and target tracking.

Radar Configuration

Assume the multifunction radar operates at S band and must detect targets between 2 km and 100
km, with a minimum target radar cross section (RCS) of 1 square meters.

fc = 2e9; % Radar carrier frequency (Hz)
c = 3e8; % Propagation speed (m/s)
lambda = c/fc; % Radar wavelength (m)

maxrng = 100e3; % Maximum range (m)
minrng = 2e3; % Minimum range (m)

Waveform

To satisfy the range requirement, define and use a linear FM waveform with a 1 MHz bandwidth.

bw = 1e6;
fs = 1.5*bw;
prf = 1/range2time(maxrng,c);
dcycle = 0.1;

wav = phased.LinearFMWaveform('SampleRate', fs, ...
 'DurationSpecification', 'Duty cycle', 'DutyCycle', dcycle, ...
 'PRF', prf, 'SweepBandwidth', bw);

Calculate the range resolution achievable by the waveform.

rngres = bw2range(bw,c)

rngres =

 150

Radar Antenna

The multifunction radar is equipped with a phased array that can electronically scan the radar beams
in space. Use a 50-by-50 rectangular array with elements separated by half wavelength to achieve a
half power beam width of approximately 2 degrees.

arraysz = 50;
ant = phased.URA('Size',arraysz,'ElementSpacing',lambda/2);
ant.Element.BackBaffled = true;

1 Featured Examples

1-166

arraystv = phased.SteeringVector('SensorArray',ant,'PropagationSpeed',c);
radiator = phased.Radiator('OperatingFrequency',fc, ...
 'PropagationSpeed', c, 'Sensor',ant, 'WeightsInputPort', true);
collector = phased.Collector('OperatingFrequency',fc, ...
 'PropagationSpeed', c, 'Sensor',ant);

beamw = rad2deg(lambda/(arraysz*lambda/2))

beamw =

 2.2918

Transmitter and Receiver

Use the detection requirements to derive the appropriate transmit power. Assume the noise figure on
the receiving preamplifier is 7 dB.

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
snr_min = albersheim(pd, pfa, 1);
ampgain = 20;
tgtrcs = 1;
ant_snrgain = pow2db(arraysz^2);

ppower = radareqpow(lambda,maxrng,snr_min,wav.PulseWidth,...
 'RCS',tgtrcs,'Gain',ampgain+ant_snrgain);

tx = phased.Transmitter('PeakPower',ppower,'Gain',ampgain,'InUseOutputPort',true);
rx = phased.ReceiverPreamp('Gain',ampgain,'NoiseFigure',7,'EnableInputPort',true);

rxpassthrough = phased.ReceiverPreamp('SampleRate',fs,'Gain',0,...
 'ReferenceTemperature',1);
radar = radarTransceiver('Waveform',wav,'Transmitter',tx,...
 'TransmitAntenna',radiator,'ReceiveAntenna',collector,...
 'Receiver',rxpassthrough,'ElectronicScanMode','Custom');

Signal Processing

The multifunction radar applies a sequence of operations, including matched filtering, time varying
gain, monopulse, and detection, to the received signal to generate range and angle measurements of
the detected targets.

% matched filter
mfcoeff = getMatchedFilter(wav);
mf = phased.MatchedFilter('Coefficients',mfcoeff,'GainOutputPort', true);

% time varying gain
tgrid = unigrid(0,1/fs,1/prf,'[)');
rgates = c*tgrid/2;
rngloss = 2*fspl(rgates,lambda);
refloss = 2*fspl(maxrng,lambda);
tvg = phased.TimeVaryingGain('RangeLoss',rngloss,'ReferenceLoss',refloss);

% monopulse
monfeed = phased.MonopulseFeed('SensorArray',ant,'PropagationSpeed',c,...

 Search and Track Scheduling for Multifunction Phased Array Radar

1-167

 'OperatingFrequency',fc,'SquintAngle',1);
monest = getMonopulseEstimator(monfeed);

Data Processing

The detections are fed into a tracker, which performs several operations. The tracker maintains a list
of tracks, that is, estimates of target states in the area of interest. If a detection cannot be assigned to
any track already maintained by the tracker, the tracker initiates a new track. In most cases, whether
the new track represents a true target or false target is unclear. At first, a track is created with a
tentative status. If enough detections are obtained, the track becomes confirmed. Similarly, if no
detections are assigned to a track, the track is coasted (predicted without correction). If the track has
a few missed updates, the tracker deletes the track.

The multifunction radar uses a tracker that associates the detections to the tracks using a global
nearest neighbor (GNN) algorithm.

tracker = radarTracker('FilterInitializationFcn',@initSATGNN,...
 'ConfirmationThreshold',[2 3], 'DeletionThreshold',5,...
 'HasDetectableTrackIDsInput',true,'AssignmentThreshold',100,...
 'MaxNumTracks',2,'MaxNumSensors',1);

Group all radar components together in a structure for easier reference in the simulation loop.

mfradar.Tx = tx;
mfradar.Rx = rx;
mfradar.TxAnt = radiator;
mfradar.RxAnt = collector;
mfradar.Wav = wav;
mfradar.Radar = radar;
mfradar.RxFeed = monfeed;
mfradar.MF = mf;
mfradar.TVG = tvg;
mfradar.DOA = monest;
mfradar.STV = arraystv;
mfradar.Tracker = tracker;
mfradar.IsTrackerInitialized = false;

Target and Scene Definition

This example assumes the radar is stationary at the origin with two targets in its field of view. One
target departs from the radar and is at a distance of around 50 km. The other target approaches the
radar and is 30 km away. Both targets have an RCS of 1 square meters.

% Define the targets.
tgtpos = [29875 49637; 0 4225; 0 0];
tgtvel = [-100 120; 0 100; 0 0];

ntgt = size(tgtpos,2);
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
target = phased.RadarTarget('MeanRCS',tgtrcs*ones(1,ntgt),'OperatingFrequency',fc);

Assume the propagation environment is free space.

channel = phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,'OperatingFrequency',fc);

Group targets and propagation channels together in a structure for easier reference in the simulation
loop.

1 Featured Examples

1-168

env.Target = target;
env.TargetMotion = tgtmotion;
env.Channel = channel;

scene = radarScenario('UpdateRate',prf);
radartraj = kinematicTrajectory('SampleRate',prf,'Position',[0 0 0],...
 'Velocity',[0 0 0],'AccelerationSource','Property',...
 'AngularVelocitySource','Property');
radarplat = platform(scene,'Position',[0 0 0],'Sensors',{radar});
tgtplat1 = platform(scene,'Trajectory',...
 kinematicTrajectory('SampleRate',prf,'Position',tgtpos(:,1).',...
 'Velocity',tgtvel(:,1).','AccelerationSource','Property',...
 'AngularVelocitySource','Property'));
tgtplat2 = platform(scene,'Trajectory',...
 kinematicTrajectory('SampleRate',prf,'Position',tgtpos(:,2).',...
 'Velocity',tgtvel(:,2).','AccelerationSource','Property',...
 'AngularVelocitySource','Property'));

env.Scene = scene;
env.RadarPlatform = radarplat;

Radar Resource Management

While using one multifunction radar to perform multiple tasks has its advantages, it also has a higher
cost and more sophisticated logic. In general, a radar has finite resources to spend on its tasks. If
resources are used for tracking tasks, then those resources are not available for searching tasks until
the tracking tasks are finished. Because of this resource allocation, a critical component when using a
multifunction radar is resource management.

Search Tasks

The search tasks can be considered as deterministic. In this example, a raster scan is used to cover
the desired airspace. If no other tasks exist, the radar scans the space one angular cell at a time. The
size of an angular cell is determined by the beam width of the antenna array.

Assume the radar scans a space from -30 to 30 degrees azimuth and 0 to 20 degrees elevation.
Calculate the angular search grid using the beam width.

scanregion = [-30, 30, 0, 20];
azscanspan = diff(scanregion(1:2));
numazscan = ceil(azscanspan/beamw);
azscanangles = linspace(scanregion(1),scanregion(2),numazscan);
elscanspan = diff(scanregion(3:4));
numelscan = ceil(elscanspan/beamw);
elscanangles = linspace(scanregion(3),scanregion(4),numelscan);
[elscangrid,azscangrid] = meshgrid(elscanangles,azscanangles);
scanangles = [azscangrid(:) elscangrid(:)].';

The beam position grid and target scene are shown below.

sceneplot = helperSATTaskPlot('initialize',scanangles,azscanangles,maxrng,beamw,tgtpos);

 Search and Track Scheduling for Multifunction Phased Array Radar

1-169

The search beams are transmitted one at a time sequentially until the entire search area is covered.
Once the entire search area is covered, the radar repeats the search sequence. The searches are
performed along the azimuthal direction, one elevation angle a time. The search tasks are often
contained in a job queue.

searchq = struct('JobType','Search','BeamDirection',num2cell(scanangles,1),...
 'Priority',1000,'WaveformIndex',1);
current_search_idx = 1;

Each job in the queue specifies the job type as well as the pointing direction of the beam. It also
contains a priority value for the job. This priority value is determined by the job type. This example
uses a value of 1000 as the priority for search jobs.

disp(searchq(current_search_idx))

 JobType: 'Search'
 BeamDirection: [2×1 double]
 Priority: 1000
 WaveformIndex: 1

Track Tasks

1 Featured Examples

1-170

Unlike search tasks, track tasks cannot be planned. Track tasks are created only when a target is
detected by a search task or when the target has already been tracked. Track tasks are dynamic tasks
that get created and executed based on the changing scenario. Similar to search tasks, track tasks
are also managed in a job queue.

trackq(10) = struct('JobType',[],'BeamDirection',[],'Priority',3000,'WaveformIndex',[],...
 'Time',[],'Range',[],'TrackID',[]);
num_trackq_items = 0;
disp(trackq(1))

 JobType: []
 BeamDirection: []
 Priority: []
 WaveformIndex: []
 Time: []
 Range: []
 TrackID: []

Group search and track queues together in a structure for easier reference in the simulation loop.

jobq.SearchQueue = searchq;
jobq.SearchIndex = current_search_idx;
jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

Because a tracking job cannot be initialized before a target is detected, all tracking jobs start as
empty jobs. Once a job is created, it contains the information such as its job type, the direction of the
beam, and time to execute. The tracking task has a priority of 3000, which is higher than the priority
of 1000 for a search job. This higher priority value means that when the time is in conflict, the system
will execute the tracking job first.

The size limit for the queue in this example is set to 10.

Task Scheduling

In this example, for simplicity, the multifunction radar executes only one type of job within a small
time period, often referred to as a dwell, but can switch tasks at the beginning of each dwell. For
each dwell, the radar looks at all tasks that are due for execution and picks the one that has the
highest priority. Consequently, jobs that get postponed will now have an increased priority and are
more likely to be executed in the next dwell.

Simulation

This section of the example simulates a short run of the multifunction radar system. The entire
structure of the multifunction radar simulation is represented by this diagram.

 Search and Track Scheduling for Multifunction Phased Array Radar

1-171

The simulation starts with the radar manager, which provides an initial job. Based on this job, the
radar transmits the waveform, simulates the echo, and applies signal processing to generate the
detection. The detection is processed by a tracker to create tracks for targets. The tracks then go
back to the radar manager. Based on the tracks and the knowledge about the scene, the radar
manager schedules new track jobs and picks the job for the next dwell.

The logic of the radar manager operation is shown in this flowchart and described in these steps.

1 Featured Examples

1-172

1 The radar starts with a search job.
2 If a target is present in the detection, the radar schedules a confirmation job in the same

direction to ensure that the presence of this target is not a false alarm. The confirmation task has
a higher priority than the search task but not as high as the track task. If the detection gets
confirmed, a track is established, and a track job is created to be executed after a given revisit
time. If the detection is not confirmed, then the original detection is considered as a false alarm,
and no track is created.

3 If the current job is a track job, the radar performs the detection, updates the track, and creates
a future track job.

4 Based on the priority and time for execution, the radar selects the next job.

Assume a dwell is 10 ms. At the beginning of the simulation, the radar is configured to search one
beam at a time.

rng(2018);
current_time = 0;

 Search and Track Scheduling for Multifunction Phased Array Radar

1-173

Npulses = 10;
numdwells = 200;
dwelltime = 0.01;

jobload.num_search_job = zeros(1,numdwells);
jobload.num_track_job = zeros(1,numdwells);

You can run the example in its entirety to see the plots being dynamically updated during execution.
In the top two plots, the color of the beams indicates the types of the current job: red for search,
yellow for confirm, and purple for track. The two plots below show the true locations (triangle),
detections (circle), and tracks (square) of the two targets, respectively. System log also displays in the
command line to explain the system behavior at the current moment. Next, the example shows more
details about several critical moments of the simulation.

Simulate the system behavior until it detects the first target. The simulation loop follows the previous
system diagram.

for dwell_idx = 1:14
 % Scheduler to provide current job
 [current_job,jobq] = currentRadarTask(jobq,current_time);

 % Simulate the received I/Q signal
 [xsum,xdaz,xdel,mfradar] = generateEchos(mfradar,env,current_job);

 % Signal processor to extract detection
 [detection,mfradar] = generateDetections(xsum,xdaz,xdel,mfradar,current_job,current_time);

 % Radar manager to perform data processing and update track queue
 [jobq,allTracks,mfradar] = updateTrackAndJobQueue(detection,jobq,mfradar,current_job,current_time,dwelltime);

 % Visualization
 helperSATTaskPlot('update',sceneplot,current_job,maxrng,beamw,tgtpos,allTracks,detection.Measurement);

 % Update time
 tgtpos = env.TargetMotion(dwelltime-Npulses/mfradar.Wav.PRF);
 current_time = current_time+dwelltime;

 % Record resource allocation
 if strcmp(current_job.JobType,'Search')
 jobload.num_search_job(dwell_idx) = 1;
 else
 jobload.num_track_job(dwell_idx) = 1;
 end

end

0.000000 sec: Search [-30.000000 0.000000]
0.010000 sec: Search [-27.692308 0.000000]
0.020000 sec: Search [-25.384615 0.000000]
0.030000 sec: Search [-23.076923 0.000000]
0.040000 sec: Search [-20.769231 0.000000]
0.050000 sec: Search [-18.461538 0.000000]
0.060000 sec: Search [-16.153846 0.000000]
0.070000 sec: Search [-13.846154 0.000000]
0.080000 sec: Search [-11.538462 0.000000]
0.090000 sec: Search [-9.230769 0.000000]
0.100000 sec: Search [-6.923077 0.000000]

1 Featured Examples

1-174

0.110000 sec: Search [-4.615385 0.000000]
0.120000 sec: Search [-2.307692 0.000000]
0.130000 sec: Search [0.000000 0.000000] Target detected at 29900.000000 m

As expected, the radar gets a detection when the radar beam illuminates the target, as shown in the
figure. When this happens, the radar sends a confirmation beam immediately to make sure it is not a
false detection.

Next, show the results for the confirmation job. The rest of this example shows simplified code that
combines the simulation loop into a system simulation function.

[mfradar,env,jobq,jobload,current_time,tgtpos] = SATSimRun(...
 mfradar,env,jobq,jobload,current_time,dwelltime,sceneplot,maxrng,beamw,tgtpos,15,15);

0.140000 sec: Confirm [0.001804 0.006157] Created track 1 at 29900.000000 m

 Search and Track Scheduling for Multifunction Phased Array Radar

1-175

The figure now shows the confirmation beam. Once the detection is confirmed, a track is established
for the target, and a track job is scheduled to execute after a short interval.

This process repeats for every detected target until the revisit time, at which point the multifunction
radar stops the search sequence and performs the track task again.

[mfradar,env,jobq,jobload,current_time,tgtpos] = SATSimRun(...
 mfradar,env,jobq,jobload,current_time,dwelltime,sceneplot,maxrng,beamw,tgtpos,16,25);

0.150000 sec: Search [2.307692 0.000000]
0.160000 sec: Search [4.615385 0.000000] Target detected at 49900.000000 m
0.170000 sec: Confirm [4.896994 0.014031] Created track 2 at 49900.000000 m
0.180000 sec: Search [6.923077 0.000000]
0.190000 sec: Search [9.230769 0.000000]
0.200000 sec: Search [11.538462 0.000000]
0.210000 sec: Search [13.846154 0.000000]
0.220000 sec: Search [16.153846 0.000000]
0.230000 sec: Search [18.461538 0.000000]
0.240000 sec: Track [0.000833 -0.000127] Track 1 at 29900.000000 m

1 Featured Examples

1-176

The results show that the simulation stops at a track beam. The zoomed-in figures around the two
targets show how the tracks are updated based on the detection and measurements. A new track job
for the next revisit is also added to the job queue during the execution of a track job.

This process repeats for each dwell. This simulation runs the radar system for a 2-second period.
After a while, the second target is detected beyond 50 km. Based on this information, the radar
manager reduces how often the system needs to track the second target. This reduction frees up
resources for other, more urgent needs.

[mfradar,env,jobq,jobload,current_time,tgtpos] = SATSimRun(...
 mfradar,env,jobq,jobload,current_time,dwelltime,sceneplot,maxrng,beamw,tgtpos,26,numdwells);

0.250000 sec: Search [20.769231 0.000000]
0.260000 sec: Search [23.076923 0.000000]
0.270000 sec: Track [4.882021 0.002546] Track 2 at 49900.000000 m
0.280000 sec: Search [25.384615 0.000000]
0.290000 sec: Search [27.692308 0.000000]
0.340000 sec: Track [0.014417 0.015384] Track 1 at 29900.000000 m
0.370000 sec: Track [4.883901 0.012786] Track 2 at 49900.000000 m
0.440000 sec: Track [0.002694 0.009423] Track 1 at 29900.000000 m
0.470000 sec: Track [4.889519 -0.009622] Track 2 at 49900.000000 m
0.540000 sec: Track [-0.003890 -0.006735] Track 1 at 29900.000000 m

 Search and Track Scheduling for Multifunction Phased Array Radar

1-177

0.570000 sec: Track [4.905253 -0.023520] Track 2 at 49900.000000 m
0.640000 sec: Track [-0.009124 0.012105] Track 1 at 29900.000000 m
0.670000 sec: Track [4.908435 -0.012902] Track 2 at 49900.000000 m
0.740000 sec: Track [-0.014700 -0.007442] Track 1 at 29800.000000 m
0.770000 sec: Track [4.916246 -0.006127] Track 2 at 49900.000000 m
0.840000 sec: Track [0.002371 -0.007959] Track 1 at 29800.000000 m
0.870000 sec: Track [4.919202 0.000403] Track 2 at 49900.000000 m
0.940000 sec: Track [0.003877 -0.018467] Track 1 at 29800.000000 m
0.970000 sec: Track [4.931431 0.003165] Track 2 at 49900.000000 m
1.040000 sec: Track [0.002358 -0.007887] Track 1 at 29800.000000 m
1.070000 sec: Track [4.932988 -0.003006] Track 2 at 49900.000000 m
1.140000 sec: Track [0.000982 -0.003077] Track 1 at 29800.000000 m
1.170000 sec: Track [4.944549 -0.004130] Track 2 at 50000.000000 m
1.240000 sec: Track [-0.000250 -0.003156] Track 1 at 29800.000000 m
1.340000 sec: Track [0.000101 -0.005774] Track 1 at 29800.000000 m
1.440000 sec: Track [0.000461 -0.003104] Track 1 at 29800.000000 m
1.540000 sec: Track [-0.000965 -0.003565] Track 1 at 29800.000000 m
1.640000 sec: Track [-0.001041 -0.003305] Track 1 at 29800.000000 m
1.670000 sec: Track [4.979614 -0.000920] Track 2 at 50000.000000 m
1.740000 sec: Track [-0.000550 -0.003633] Track 1 at 29800.000000 m
1.840000 sec: Track [-0.002676 -0.003713] Track 1 at 29800.000000 m
1.940000 sec: Track [-0.005176 -0.003055] Track 1 at 29800.000000 m

1 Featured Examples

1-178

Resource Distribution Analysis

This section of the example shows how the radar resource is distributed among different tasks. This
figure shows how the multifunction radar system in this example distributes its resources between
search and track.

L = 10;
searchpercent = sum(buffer(jobload.num_search_job,L,L-1,'nodelay'))/L;
trackpercent = sum(buffer(jobload.num_track_job,L,L-1,'nodelay'))/L;
figure;
plot((1:numel(searchpercent))*L*dwelltime,[searchpercent(:) trackpercent(:)]);
xlabel('Time (s)');
ylabel('Job Percentage');
title('Resource Distribution between Search and Track');
legend('Search','Track','Location','best');
grid on;

The figure suggests that, at the beginning of the simulation, all resources are spent on search. Once
the targets are detected, the radar resources get split into 80% and 20% between search and track,
respectively. However, once the second target gets farther away, more resources are freed up for
search. The track load increases briefly when the time arrives to track the second target again.

 Search and Track Scheduling for Multifunction Phased Array Radar

1-179

Summary

This example introduces the concept of resource management and task scheduling in a
multifunctional phased array radar system. It shows that, with the resource management component,
the radar acts as a closed loop system. Although the multifunction radar in this example deals only
with search and track tasks, the concept can be extended to more realistic situations where other
functions, such as self-check and communication, are also involved.

References

[1] Walter Weinstock, "Computer Control of a Multifunction Radar", Practical Phased Array Antenna
Systems, Lex Book, 1997

Appendices

These helper functions model the radar resource management workflow.

currentRadarTask

The function currentRadarTask compares the jobs in the search queue and the track queue and
selects the job with the highest priority to execute.

function [currentjob,jobq] = currentRadarTask(jobq,current_time)

searchq = jobq.SearchQueue;
trackq = jobq.TrackQueue;
searchidx = jobq.SearchIndex;
num_trackq_items = jobq.NumTrackJobs;

% Update search queue index
searchqidx = mod(searchidx-1,numel(searchq))+1;

% Find the track job that is due and has the highest priority
readyidx = find([trackq(1:num_trackq_items).Time]<=current_time);
[~,maxpidx] = max([trackq(readyidx).Priority]);
taskqidx = readyidx(maxpidx);

% If the track job found has a higher priority, use that as the current job
% and increase the next search job priority since it gets postponed.
% Otherwise, the next search job due is the current job.
if ~isempty(taskqidx) && trackq(taskqidx).Priority >= searchq(searchqidx).Priority
 currentjob = trackq(taskqidx);
 for m = taskqidx+1:num_trackq_items
 trackq(m-1) = trackq(m);
 end
 num_trackq_items = num_trackq_items-1;
 searchq(searchqidx).Priority = searchq(searchqidx).Priority+100;
else
 currentjob = searchq(searchqidx);
 searchidx = searchqidx+1;

end

jobq.SearchQueue = searchq;
jobq.SearchIndex = searchidx;
jobq.TrackQueue = trackq;

1 Featured Examples

1-180

jobq.NumTrackJobs = num_trackq_items;

generateEchos

The function generateEchos simulates the complex (I/Q) baseband representation of the target
echo received at the radar.

function [xrsint,xrdazint,xrdelint,mfradar] = generateEchos(mfradar,env,current_job)

% Number of pulses and operating frequency
Npulses = 10;
fc = mfradar.TxAnt.OperatingFrequency;

for m = 1:Npulses
 % Transmit weights
 w = mfradar.STV(fc,current_job.BeamDirection);

 % Simulate echo
 advance(env.Scene);
 xr1 = mfradar.Radar(targetPoses(env.RadarPlatform),(m-1)/mfradar.Wav.PRF,conj(w));

 % Monopulse
 [xrs,xrdaz,xrdel] = mfradar.RxFeed(xr1,current_job.BeamDirection);

 % Pulse integration
 inuseflag = zeros(size(xr1,1),1);
 inuseflag(1:round(mfradar.Wav.DutyCycle/mfradar.Wav.PRF*mfradar.Wav.SampleRate))=1;
 if m == 1
 xrsint = mfradar.Rx(xrs,~(inuseflag>0));
 xrdazint = mfradar.Rx(xrdaz,~(inuseflag>0));
 xrdelint = mfradar.Rx(xrdel,~(inuseflag>0));
 else
 xrsint = xrsint+mfradar.Rx(xrs,~(inuseflag>0));
 xrdazint = xrdazint+mfradar.Rx(xrdaz,~(inuseflag>0));
 xrdelint = xrdelint+mfradar.Rx(xrdel,~(inuseflag>0));
 end
end

generateDetections

The function generateDetections applies signal processing techniques on the echo to generate
target detection.

function [detection,mfradar] = generateDetections(xrsint,xrdazint,xrdelint,mfradar,current_job,current_time)

% Compute detection threshold
nbw = mfradar.Rx.SampleRate/(mfradar.Wav.SampleRate/mfradar.Wav.SweepBandwidth);
npower = noisepow(nbw,mfradar.Rx.NoiseFigure,mfradar.Rx.ReferenceTemperature);
pfa = 1e-6;
threshold = npower * db2pow(npwgnthresh(pfa,1,'noncoherent'));
arraysz = mfradar.TxAnt.Sensor.Size(1);
ant_snrgain = pow2db(arraysz^2);
mfcoeff = getMatchedFilter(mfradar.Wav);
mfgain = pow2db(norm(mfcoeff)^2);

 Search and Track Scheduling for Multifunction Phased Array Radar

1-181

threshold = threshold * db2pow(mfgain+2*ant_snrgain);
threshold = sqrt(threshold);

tgrid = unigrid(0,1/mfradar.Wav.SampleRate,1/mfradar.Wav.PRF,'[)');
rgates = mfradar.TxAnt.PropagationSpeed*tgrid/2;

% Matched filtering and time varying gain
xrsmf = mfradar.TVG(mfradar.MF(xrsint));

% Detection in range and angle estimation via monopulse
if any(abs(xrsmf)>threshold)
 [~,tgtidx] = findpeaks(abs(xrsmf),'MinPeakHeight',threshold,...
 'Sortstr','Descend','NPeaks',1);
 rng_est = rgates(tgtidx-(numel(mfcoeff)-1));
 ang_est = mfradar.DOA(xrsint(tgtidx-1),xrdazint(tgtidx-1),xrdelint(tgtidx-1),current_job.BeamDirection);
 % Form the detection object.
 measNoise = diag([0.1, 0.1, 150].^2); % Measurement noise matrix
 detection = objectDetection(current_time,...
 [ang_est(1);ang_est(2);rng_est], 'MeasurementNoise', measNoise,...
 'MeasurementParameters',struct('Frame','spherical', 'HasVelocity', false));
else
 detection = objectDetection.empty;
end

if current_time < 0.3 || strcmp(current_job.JobType,'Track')
 fprintf('\n%f sec:\t%s\t[%f %f]',current_time,current_job.JobType,current_job.BeamDirection(1),...
 current_job.BeamDirection(2));
end

updateTrackAndJobQueue

The function updateTrackAndJobQueue tracks the detection and then passes tracks to the radar
manager to update the track task queue.

function [jobq,allTracks,mfradar] = updateTrackAndJobQueue(detection,jobq,mfradar,current_job,current_time,dwellinterval)

trackq = jobq.TrackQueue;
num_trackq_items = jobq.NumTrackJobs;

% Execute current job
switch current_job.JobType
 case 'Search'
 % For search job, if there is a detection, establish tentative
 % track and schedule a confirmation job
 if ~isempty(detection)
 ang_est = detection.Measurement(1:2);
 rng_est = detection.Measurement(3);
 if ~mfradar.IsTrackerInitialized
 [~,~,allTracks] = mfradar.Tracker(detection,current_time,uint32([]));
 mfradar.IsTrackerInitialized = true;
 else
 [~,~,allTracks] = mfradar.Tracker(detection,current_time,uint32([]));
 end
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = struct('JobType','Confirm','Priority',2000,...

1 Featured Examples

1-182

 'BeamDirection',ang_est,'WaveformIndex',1,'Time',current_time+dwellinterval,...
 'Range',rng_est,'TrackID',allTracks(~[allTracks.IsConfirmed]).TrackID);
 if current_time < 0.3 || strcmp(current_job.JobType,'Track')
 fprintf('\tTarget detected at %f m',rng_est);
 end
 else
 allTracks = [];
 end

 case 'Confirm'
 % For confirm job, if the detection is confirmed, establish a track
 % and create a track job corresponding to the revisit time
 if ~isempty(detection)
 trackid = current_job.TrackID;
 [~,~,allTracks] = mfradar.Tracker(detection,current_time,trackid);

 rng_est = detection.Measurement(3);
 if rng_est >= 50e3
 updateinterval = 0.5;
 else
 updateinterval = 0.1;
 end
 revisit_time = current_time+updateinterval;
 predictedTrack = predictTracksToTime(mfradar.Tracker,trackid,revisit_time);
 xpred = predictedTrack.State([1 3 5]);
 [phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = struct('JobType','Track','Priority',3000,...
 'BeamDirection',rad2deg([phipred;thetapred]),'WaveformIndex',1,'Time',revisit_time,...
 'Range',rpred,'TrackID',trackid);
 if current_time < 0.3 || strcmp(current_job.JobType,'Track')
 fprintf('\tCreated track %d at %f m',trackid,rng_est);
 end
 else
 allTracks = [];
 end

 case 'Track'
 % For track job, if there is a detection, update the track and
 % schedule a track job corresponding to the revisit time. If there
 % is no detection, predict and schedule a track job sooner so the
 % target is not lost.
 if ~isempty(detection)
 trackid = current_job.TrackID;
 [~,~,allTracks] = mfradar.Tracker(detection,current_time,trackid);

 rng_est = detection.Measurement(3);
 if rng_est >= 50e3
 updateinterval = 0.5;
 else
 updateinterval = 0.1;
 end

 revisit_time = current_time+updateinterval;
 predictedTrack = predictTracksToTime(mfradar.Tracker,trackid,revisit_time);
 xpred = predictedTrack.State([1 3 5]);
 [phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
 num_trackq_items = num_trackq_items+1;

 Search and Track Scheduling for Multifunction Phased Array Radar

1-183

 trackq(num_trackq_items) = struct('JobType','Track','Priority',3000,...
 'BeamDirection',rad2deg([phipred;thetapred]),'WaveformIndex',1,'Time',revisit_time,...
 'Range',rpred,'TrackID',trackid);

 if current_time < 0.3 || strcmp(current_job.JobType,'Track')
 fprintf('\tTrack %d at %f m',trackid,rng_est);
 end
 else
 trackid = current_job.TrackID;
 [~,~,allTracks] = mfradar.Tracker(detection,current_time,trackid);

 updateinterval = 0.1; % revisit sooner
 revisit_time = current_time+updateinterval;
 predictedTrack = predictTracksToTime(mfradar.Tracker,trackid,revisit_time);
 xpred = predictedTrack.State([1 3 5]);

 [phipred,thetapred,rpred] = cart2sph(xpred(1),xpred(2),xpred(3));
 num_trackq_items = num_trackq_items+1;
 trackq(num_trackq_items) = struct('JobType','Track','Priority',3000,...
 'BeamDirection',rad2deg([phipred;thetapred]),'WaveformIndex',1,'Time',revisit_time,...
 'Range',rpred,'TrackID',trackid);

 if current_time < 0.3 || strcmp(current_job.JobType,'Track')
 fprintf('\tNo detection, track %d predicted',current_job.TrackID);
 end
 end

end

jobq.TrackQueue = trackq;
jobq.NumTrackJobs = num_trackq_items;

1 Featured Examples

1-184

PRF Agility Based on Target Detection
In radar operation, it is often necessary to adjust the operation mode based on the target return. This
example shows how to model a radar that changes its pulse repetition frequency (PRF) based on the
radar detection.

Available Example Implementations

This example includes one Simulink® model:

• PRF Agility Based on Radar Detection: slexPRFSchedulingExample.slx

Dynamic PRF Selection Based on Radar Detection

This model simulates a monostatic radar that searches for targets with an unambiguous range of 5
km. If the radar detects a target within 2 km, then it will switch to a higher PRF to only look for
targets with 2 km range and enhance its capability to detect high speed targets.

The system is very similar to what is used in the “Simulating Test Signals for a Radar Receiver in
Simulink” example with the following notable difference:

1 The waveform block is no longer a source block. Instead, it takes an input, idx, to select which
PRF to use. The available PRF values are specified in the PRF parameter of the waveform dialog.

2 Each time a waveform is transmitted, its corresponding PRF also sets the time when the next
pulse should be transmitted.

3 There is now a controller to determine which PRF to use for the next transmission. At the end of
the signal processing chain, the target range is estimated. The controller will use this
information to decide which PRF to choose for next transmission.

4 Once the model is compiled, notice that the signal passing through the system can vary in length
because of a possible change of the waveform PRF.

 PRF Agility Based on Target Detection

1-185

matlab:slexPRFSchedulingExample

5 The model takes advantage of the new controllable sample time so the system runs at the
appropriate time determined by the varying PRF values.

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexPRFSchedulingSim. To open the function from the model, click on Modify Simulation
Parameters block. This function is executed once when the model is loaded. It exports to the
workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either
change the values in the structure at the command prompt or edit the helper function and rerun it to
update the parameter structure.

Results and Displays

The figure below shows the detected ranges of the targets. Target ranges are computed from the
round-trip time delay of the reflected signals from the targets. At the simulation start, the radar
detects two targets, one is slightly over 2 km away and the other one is at approximately 3.5 km
away.

After some time, the first target moves into the 2 km zone and triggers a change of PRF. Then the
received signal only covers the range up to 2 km. The display is zero padded to ensure that the plot
limits do not change. Notice that the target at 3.5 km gets folded to the 1.5 km range due to range
ambiguity.

1 Featured Examples

1-186

Summary

This example shows how to build a radar system in Simulink® that dynamically changes its PRF
based on the target detection range. A staggered PRF system can be modeled similarly.

 PRF Agility Based on Target Detection

1-187

Interference Mitigation Using Frequency Agility Techniques
This example shows how to model frequency agility techniques to counter the effects of interference
in radar, communications, and EW systems. Using Simulink, a scenario is created with a ground
based radar and an approaching aircraft who can also emit jamming signals. A similar example in
MATLAB can be found in “Frequency Agility in Radar, Communications, and EW Systems” on page 1-
196.

Introduction

In this model, a phased array radar is designed to detect an approaching aircraft. The aircraft is
equipped with a jammer which can intercept the radar signal and transmit a spoofing signal back to
confuse the radar. On the other hand, the radar system is capable of transmitting waveform with
different operating frequencies to mitigate the jamming effect. The model includes blocks for
waveform generation, signal propagation, and radar signal processing. It shows how the radar and
jammer interact and gain advantage over each other.

The radar is operating at 300 MHz with a sampling rate of 2 MHz. The radar is located at the origin
and is assumed to be stationary. The target is located about 10 km away and approaching at
approximately 100 meters per second.

Waveform Generation

The Waveform Generation subsystem includes a pulse waveform library containing linear FM (LFM)
waveform with different configurations. By varying the input index to the pulse waveform library, a
frequency hopped waveform at a shifted center frequency is generated. Therefore, the radar system
is capable of switching transmit waveform either following a fixed schedule or when it detects
jamming signals. This example assumes that the waveform can be generated for two different

1 Featured Examples

1-188

frequencies, referred to as center band and hopped band. The center band is the subband around the
carrier frequency and the hopped band is the subband located quarter bandwidth above the carrier.

Propagation Channels

The signal propagation is modeled for both the forward channel and the return channel. Once the
transmitted signal hits the target aircraft, the reflected signal travels back to the radar system via the
return channel. In addition, the jammer analyzes the incoming signal and send back a jamming signal
to confuse the radar system. That jamming signal is also propagated through the return channel.
Because different signals may occupy different frequency bands, wideband propagation channels are
used.

Signal Processing

The radar receives both the target return and the jamming signal. Upon receiving the signal, a series
filters are used to extract the signal from different bands. In this example, there are two of them to
extract the signal from the center band and the hopped band. The signal in each band then passes
through the corresponding matched filter to improve the SNR and be ready for detection.

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexFrequencyAgilityParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports to
the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

First run the model for the case when there is no jamming signal. The scopes shows that there is one
strong echo in the center band with a delay of approximately 67 microseconds, which corresponds to

 Interference Mitigation Using Frequency Agility Techniques

1-189

a target range of 10 km. Therefore, the target is correctly detected. Meanwhile, there is no return
detected in the hopped band.

The spectrum analyzer shows that the received signal occupies the center band.

1 Featured Examples

1-190

Now enable jammer by clicking the Jammer Switch block. In this situation, the target intercepts the
signal, amplify it, and then sends it back with a delay corresponding to a different range. As a result,
the scope now shows two returns in the center band. The true target return is still at the old position,
but the ghost return generated by the jammer appears stronger and closer to the radar so the radar
is likely to be confused and assign precious resource to track this fake target.

 Interference Mitigation Using Frequency Agility Techniques

1-191

Note that both the jammer signal and the target return are in the center band, as shown in the
spectrum analyzer.

1 Featured Examples

1-192

If the radar has a pre-scheduled frequency hopping schedule or is smart enough to know that it might
have been confused by a jamming signal, it could switch to a different frequency band to operate.
Such scenario can be simulated by clicking the Hop Switch block so the radar signal is transmitted in
the hopped band.

 Interference Mitigation Using Frequency Agility Techniques

1-193

Because the radar now operates in the hopped band, the target echo is also in the hopped band. From
the scope, the target echo is at the appropriate delay in the hopped band. Meanwhile, the jammer
hasn't figured out the radar's new operating band yet so the jamming signal still appears in the
center band. Yet the jamming signal can no longer fool the radar.

1 Featured Examples

1-194

The spectrum analyzer shows that the received signal now occupies two bands.

Summary

This models a radar system detecting a target equipped with a jammer. It shows how frequency
agility techniques can be used to mitigate the jamming effect.

 Interference Mitigation Using Frequency Agility Techniques

1-195

Frequency Agility in Radar, Communications, and EW Systems
This example shows how to model frequency agility in radar, communications and EW systems to
counter the effects of interference.

Introduction

Active electronically steered phased array systems can support multiple applications using the same
array hardware. These applications may include radar, EW, and communications. However, the RF
environments that these types of systems operate in are complex and sometimes hostile. For example,
a repeater jammer can repeat the received radar signal and retransmit it to confuse the radar. In
some literature, this is also called spoofing. Frequency agility can be an effective technique to
counter the signals generated from interference sources and help support effective operations of
these systems.

In this example, we first set up a scenario with a stationary monostatic radar and a moving aircraft
target. The aircraft then generates a spoofing signal which confuses the radar. Once the radar detects
the jamming source, frequency agility techniques can be employed which allows the radar to
overcome the interference.

System Simulation In an Interference Free Environment

Assume an X-band monostatic radar at the origin.

fc = 10e9; % Define frequency of operation for X-band Radar
fs = 2e6; % Define sample rate for the systems
c = 3e8;
lambda = c/fc;

radar_pos = [0;0;0];
radar_vel = [0;0;0];

The radar receiver, which can also function as an EW receiver, is a 64-element (8x8) URA with half
wavelength spacing.

% Array specification for the radar
taper = taylorwin(8);
taperURA = taper.*taper';
antenna = phased.URA('Element',phased.CosineAntennaElement,...
 'Size',[8 8],'ElementSpacing',[lambda/2 lambda/2],...
 'Taper',taperURA);

The beam pattern of the array is shown in the following figure.

pattern(antenna,fc,'Type','powerdb');

1 Featured Examples

1-196

The radar transmits linear FM pulses. The transmitter and receiver specifications are:

wav = phased.LinearFMWaveform('SampleRate',fs,...
 'PulseWidth', 10e-5, 'SweepBandwidth', 1e5,'PRF',4000,...
 'FrequencyOffsetSource','Input port');

tx = phased.Transmitter('Gain',20,'PeakPower',500);
txArray = phased.WidebandRadiator('SampleRate', fs,...
 'Sensor',antenna,'CarrierFrequency', fc);
rxArray = phased.WidebandCollector('SampleRate', fs,...
 'Sensor',antenna,'CarrierFrequency', fc);
rxPreamp = phased.ReceiverPreamp('Gain',10,'NoiseFigure',5,...
 'SampleRate', fs);

The environment and target are described below. Wideband propagation channels are used to allow
us to propagate waveforms with different carrier frequencies.

target = phased.RadarTarget('MeanRCS',100,'OperatingFrequency',fc);

target_pos = [8000;1000;1000];
target_vel = [100;0;0];

% Outgoing and incoming channel
envout = phased.WidebandFreeSpace('TwoWayPropagation',false,...
 'SampleRate', fs,'OperatingFrequency',fc,'PropagationSpeed',c);
envin = phased.WidebandFreeSpace('TwoWayPropagation',false,...
 'SampleRate', fs,'OperatingFrequency',fc,'PropagationSpeed',c);

 Frequency Agility in Radar, Communications, and EW Systems

1-197

In this example, two one-way propagation channels are used because the jamming signal only
propagates through the return channel.

The received echo can be simulated as

rng(2017);
[tgtRng, tgtAng] = rangeangle(target_pos, radar_pos);
x = wav(0); % waveform
xt = tx(x); % transmit
xtarray = txArray(xt, tgtAng); % radiate
yp = envout(xtarray,radar_pos,target_pos,radar_vel,target_vel); % propagate
yr = target(yp); % reflect
ye = envin(yr,target_pos,radar_pos,target_vel,radar_vel); % propagate
yt = rxArray(ye,tgtAng); % collect
yt = rxPreamp(yt); % receive

We can perform a direction of arrival estimate using a 2D beam scan and used the estimated azimuth
and elevation angles to direct the beamformer.

estimator = phased.BeamscanEstimator2D('SensorArray',antenna,...
 'DOAOutputPort',true,...
 'OperatingFrequency', fc,...
 'NumSignals',1,...
 'AzimuthScanAngles',-40:40,...
 'ElevationScanAngles',-60:60);

[~,doa] = estimator(yt);

beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',antenna,...
 'OperatingFrequency',fc,'DirectionSource','Input port',...
 'SampleRate',fs, 'WeightsOutputPort',true);

[ybf,~] = beamformer(yt,doa);

The beamformed signal can then be passed through matched filter and detector.

mfcoeff1 = getMatchedFilter(wav);
mf1 = phased.MatchedFilter('Coefficients',mfcoeff1);
y1 = mf1(ybf);

nSamples = wav.SampleRate/wav.PRF;

t = ((0:nSamples-1)-(numel(mfcoeff1)-1))/fs;
r = t*c/2;
plot(r/1000,abs(y1),'-'); grid on;
xlabel('Range (km)');
ylabel('Pulse Compressed Signal Magnitude');

1 Featured Examples

1-198

The figure shows that the target produces a dominant peak in the received signal.

Signal Analysis at the Target/Jammer

The radar works very well in the above example. However, in a complex environment, interferences
can affect the radar performance. The interferences may be from other systems, such as wireless
communication signals, or jamming signals. Modern radar systems must be able to operate in such
environments.

A phased array radar can filter out interference using spatial processing. If the target and the
jamming source are not closely located in angular space, beamforming may be an effective way to
suppress the jammer. More details can be found in the “Array Pattern Synthesis” example.

This example focuses on the situation where the target and the interference are closely located so
that the spatial processing cannot be used to separate the two. Consider the case where the target
aircraft can determine the characteristics of the signal transmitted from the radar and use that
information to generate a pulse that will confuse the radar receiver. This is a common technique used
in jamming or spoofing to draw the radar away from the true target.

The detected signal characteristics are displayed below

pw = (pulsewidth(abs(yp), fs));
prf = round(1/pulseperiod(abs([yp;yp]), fs));
bw= obw(yp,fs,[],95);

fprintf('Waveform Characteristics:\n');

 Frequency Agility in Radar, Communications, and EW Systems

1-199

Waveform Characteristics:

fprintf('Pulse width:\t\t%f\n',pw);

Pulse width: 0.000100

fprintf('PRF:\t\t\t%f\n',prf);

PRF: 4000.000000

fprintf('Sweep bandwidth:\t%f\n',bw);

Sweep bandwidth: 112041.098255

The jammer needs some time to do these analysis and prepare for the jamming signal so it is hard to
create an effective spoofing signal right away, but generally within several pulses intervals the
jamming signal is ready and the jammer can put it within arbitrary position in a pulse to make the
spoofing target look closer or father compared to the true target. It is also worth noting that with the
latest hardware, the time needed to estimate the characteristics of the signal decreases dramatically.

Assume the jammer wants to put the signal at about 5.5 km out, the jammer could transmit the
jamming signal at the right moment to introduce the corresponding delay. In addition, because this is
a one way propagation from the jammer to the radar, the required power is much smaller. This is
indeed what makes jamming very effective as it does not require much power to blind the radar.

jwav = phased.LinearFMWaveform('SampleRate',fs,...
 'PulseWidth',pw,'SweepBandwidth',bw,'PRF',prf);

xj = jwav();
Npad = ceil(5500/(c/fs));
xj = circshift(xj,Npad); % pad zero to introduce corresponding delay

txjam = phased.Transmitter('Gain',0,'PeakPower',5);
xj = txjam(xj);

ye = envin(yr+xj,target_pos,radar_pos,target_vel,radar_vel);
yt = rxArray(ye,tgtAng);
yt = rxPreamp(yt);

ybfj = beamformer(yt,doa);
y1j = mf1(ybfj); % Jammer plus target return

plot(r/1000,abs(y1j)); grid on;
xlabel('Range (km)');
ylabel('Magnitude');
title('Pulse Compressed Return From Target And Jammer');

1 Featured Examples

1-200

The received signal now contains both the desired target return and the jamming signal. In addition,
the jamming signal appears to be closer. Therefore, the radar is more likely to lock on to the closest
target thinking that one is the most prominent threat and spend less resource on the true target.

Frequency Agility to Counter Interference

One possible approach to mitigate the jamming effect at the radar receiver is to adopt a predefined
frequency hopping schedule. In this case, the waveform transmitted from radar may change carrier
frequency from time to time. Since the hopping sequence is only known to the radar, the jammer
would not be able to follow the change right away. Instead, it needs to take more time to acquire the
correct carrier frequency before a new jamming signal can be generated. It also requires more
advanced hardware on jammer to be able to handle transmission of signals over a broader bandwidth.
Thus, the frequency hop can create a time interval that radar operates without being affected by the
spoofing signal. In addition, the radar can hop again before the jammer can effectively generate the
spoofing signal.

In the following situation, assume that the transmitted signal hops 500 kHz from the original carrier
frequency of 10 GHz. Therefore, the new waveform signal becomes

deltaf = fs/4;
xh = wav(deltaf); % hopped signal

The figure below shows the spectrogram of both the original signal and the hopped signal. Note that
the hopped signal is a shift in the frequency domain compared to the original signal.

pspectrum(x+xh,fs,'spectrogram')

 Frequency Agility in Radar, Communications, and EW Systems

1-201

Using similar approach outlined in earlier sections, the radar echo can be simulated using the new
waveform. Note that since jammer is not aware of this hop, the jamming signal is still the same.

xth = tx(xh);
xtharray = txArray(xth, tgtAng);
yph = envout(xtharray,radar_pos,target_pos,radar_vel,target_vel);
yrh = target(yph);

yeh = envin(yrh+xj,target_pos,radar_pos,target_vel,radar_vel);
yth = rxArray(yeh,tgtAng);
yth = rxPreamp(yth);

ybfh = beamformer(yth,doa);

Because the hopping schedule is known to the radar, the signal processing algorithm could use that
information to extract only the frequency band that around the current carrier frequency. This helps
reject the interference at other bands and also improves the SNR since the noise from other bands
are suppressed. In addition, when the waveform hops, the matched filter needs to be updated
accordingly.

Let us now apply the corresponding bandpass filters and matched filters to the received signal.

First, create a bandpass filter using the signal's bandwidth.

buttercoef = butter(9,bw/fs);

Then, we can modulate the resulting bandpass filter with a carrier to obtain the bandpass filter
around that carrier frequency.

1 Featured Examples

1-202

bf2 = buttercoef.*exp(1i*2*pi*deltaf*(0:numel(buttercoef)-1)/fs);

Similarly, the matched filter coefficient needs to be modulated too.

mfcoeff2 = getMatchedFilter(wav,'FrequencyOffset',deltaf);
mf2 = phased.MatchedFilter('Coefficients',mfcoeff2);

% extract bands and apply matched filters
yb2 = mf2(filter(bf2(:),1,ybfh));

% plot the matched filtered signal
plot(r/1000,abs(yb2)); grid on;
xlabel('Range (km)'); ylabel('Magnitude');
title('Pulse Compressed Signal');

The figure shows that with the adoption of frequency hopping, the target echo and the jamming
signal can be separated. Since the jammer is still in the original band, only the true target echo
appears in the new frequency band where the waveform currently occupies, thus suppressing the
impact of the jammer.

Summary

This example shows that adopting frequency agility can help counter the jamming effect in a complex
RF environment. The example simulates a system with frequency hopping waveform and verifies that
this technique helps the radar system to identify the true target echo without being confused by the
jamming signal.

 Frequency Agility in Radar, Communications, and EW Systems

1-203

Waveform Scheduling Based on Target Detection
In radar operation, it is often necessary to adjust the operation mode based on the target return. This
example shows how to model a radar that changes its pulse repetition frequency (PRF) based on the
radar detection.

This example requires SimEvents®.

Available Example Implementations

This example includes one Simulink® model:

• Dynamic PRF Selection Based on Radar Detection: slexPRFSelectionSEExample.slx

Dynamic PRF Selection Based on Radar Detection

This model simulates a monostatic radar that searches for targets with an unambiguous range of 5
km. If the radar detects a target within 2 km, then it will switch to a higher PRF to only look for
targets with 2 km range and enhance its capability to detect high speed targets.

helperslexPRFSelectionSim('openModel');

The model consists of two main subsystem, a radar system and its corresponding controller. From the
top level, the radar system resides in a Simulink function block. Note that the underlying function is
specified in the figure as [dt,r] = f(idx). This means that the radar takes one input, idx, which
specifies the index of selected PRF of the transmitted signal and returns two outputs: dt, the time the
next pulse should be transmitted and r, the detected target range of the radar system. The radar
controller, shown in the following figure, uses the detection and the time to schedule when and what
to transmit next.

1 Featured Examples

1-204

matlab:slexPRFSelectionSEExample

helperslexPRFSelectionSim('showController');

Radar System

The radar system resides in a Simulink function block and is shown in the following figure.

helperslexPRFSelectionSim('showRadar');

The system is very similar to what is used in the “Waveform Scheduling Based on Target Detection”
example with the following notable difference:

1 The waveform block is no longer a source block. Instead, it takes an input, idx, to select which
PRF to use. The available PRF values are specified in the PRF parameter of the waveform dialog.

2 The output of the waveform is also used to compute the time, dt, that the next pulse should be
transmitted. Note that in this case, the time interval is proportional to the length of the
transmitted signal.

3 At the end of the signal processing chain, the target range is estimated and returned in r. The
controller will use this information to decide which PRF to choose for next transmission.

4 Once the model is compiled, notice that the signal passing through the system can vary in length
because of a possible change of the waveform PRF. In addition, because the sample rate cannot
be derived inside a Simulink function subsystem, the sample rate is specified in the block
diagrams, such as the Tx and Rx paths, the receiver preamp, and other blocks.

helperslexPRFSelectionSim('updateModel');

 Waveform Scheduling Based on Target Detection

1-205

helperslexPRFSelectionSim('showRadar');

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexPRFSelectionParam. To open the function from the model, click on Modify Simulation
Parameters block. This function is executed once when the model is loaded. It exports to the
workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either
change the values in the structure at the command prompt or edit the helper function and rerun it to
update the parameter structure.

Results and Displays

The figure below shows the detected ranges of the targets. Target ranges are computed from the
round-trip time delay of the reflected signals from the targets. At the simulation start, the radar
detects two targets, one is slightly over 2 km away and the other one is at approximately 3.5 km
away.

helperslexPRFSelectionSim('runModel',0.1);
helperslexPRFSelectionSim('showResult');

1 Featured Examples

1-206

After some time, the first target moves into the 2 km zone and triggers a change of PRF. Then the
received signal only covers the range up to 2 km. The display is zero padded to ensure that the plot
limits do not change. Notice that the target at 3.5 km gets folded to the 1.5 km range due to range
ambiguity.

helperslexPRFSelectionSim('runModel');
helperslexPRFSelectionSim('showResult');

 Waveform Scheduling Based on Target Detection

1-207

Summary

This example shows how to build a radar system in Simulink® that dynamically changes its PRF
based on the target detection range. A staggered PRF system can be modeled similarly.

helperslexPRFSelectionSim('closeModel');

1 Featured Examples

1-208

Labeling Radar Signals with Signal Labeler
This example shows how to label the main time and frequency features of pulse radar signals. This
step facilitates the process of creating complete and accurate data sets to train artificial intelligence
(AI) models. Signal Labeler eases this task in two ways. In manual mode, synchronized time and
time-frequency views help users identify frequency features such as the waveform type, which can be
either Rectangular, LinearFM, or SteppedFM in this example. In automated mode, users can
register functions that measure pulse repetition frequency (PRF), pulse width, duty cycle, and pulse
bandwidth and only correct mistakes instead of labeling all signals from scratch. A built-in dashboard
helps track the labeling progress and assess the quality of the labels.

Import Data into Signal Labeler

The radar signals to be labeled in this example are stored in individual MAT-files. Each file contains a
data variable x and a corresponding sample rate variable Fs.

Open Signal Labeler. On the Labeler tab, click Import and select From Folders in the Members
list. In the dialog box, select the directory with radar signal files. To specify the signal variables that
you want to read, click Specify and enter x. Add time information: Choose the Working in option
and select Time from the drop-down list. Select Sample Rate Variable From Files in the list
and enter Fs. Click Import. The imported files appear in the Labeled Signal Set Browser. Plot the
signals by selecting the check boxes next to their names.

 Labeling Radar Signals with Signal Labeler

1-209

https://www.mathworks.com/help/signal/ref/signallabeler-app.html

Define Labels

Create a label definition for the signal waveform type.

1 Create a string attribute label to label the waveform type. Click Add on the Labeler tab and
select Add Label Definition.

2 In the dialog box, specify the Label Name as WaveFormType, select a Label Type of Attribute,
enter the Data Type as string.

3 Click OK.

Repeat 1–3 to create attribute label definitions for PRF, duty cycle, and bandwidth. Modify the label
name for each and set the data type as numeric.

Create a region-of-interest (ROI) label for pulsewidth that corresponds to the regions showing initial
and final crossings used to compute each pulsewidth. Specify Label Name as PulseWidth, Label
Type as ROI, and Data Type as numeric. The label definitions appear in the Label Definitions
browser.

1 Featured Examples

1-210

Create Custom Autolabeling Functions

Create four Custom Labeling Functions to label the PRF, bandwidth, duty cycle, and pulsewidth.
(Code for the computePRF, computeBandWidth, computeDutyCycle and computePulseWidth functions
appears later in the example). To create each function, in the Labeler tab, click Automate Value and
select Add Custom Function. Signal Labeler shows a dialog box asking for the name, description,
and label type of the function.

1 For the function that computes the PRF, enter computePRF on page 1-0 in the Name field and
select Attribute as the Label Type. You can leave the Description field empty or you can enter
your own description.

2 For the function that computes the bandwidth, enter computeBandWidth on page 1-0 in the
Name field and select Attribute as the Label Type. You can leave the Description field empty or
you can enter your own description.

3 For the function that computes the duty cycle, enter computeDutyCycle on page 1-0 in the
Name field and select Attribute as the Label Type. You can leave the Description field empty or
you can enter your own description.

4 For the function that computes the pulsewidth, enter computePulseWidth on page 1-0 in the
Name field and select ROI as the Label Type. You can leave the Description field empty or you
can enter your own description.

 Labeling Radar Signals with Signal Labeler

1-211

https://www.mathworks.com/help/signal/ug/custom-labeling-functions.html

If you already have written the functions, and the functions are in the current folder or in the
MATLAB® path, Signal Labeler adds the functions to the gallery. If you have not written the
functions, Signal Labeler opens blank templates in the Editor for you to type or paste the code. Save
the files. Once you save the files, the functions appear in the gallery.

Label Waveform Type, PRF, Bandwidth, Duty Cycle, and Pulsewidth

Set the waveform type of each signal:

1 In the Labeled Signal Set Browser, select the check box next to radarData1.
2 Click the Display tab and select Spectrogram in the Views section. The app displays a set of

axes with the signal spectrogram and a Spectrogram tab with options to control the view.
3 Click the Spectrogram tab and set the overlap percentage to 99.
4 The spectrogram shows the signal waveform is rectangular. In the label viewer attribute table,

double-click the cell below WaveFormType and type Rectangular.
5 Repeat this manual labeling step for all the signals in the dataset.

This is an example of a Rectangular waveform:

1 Featured Examples

1-212

This is an example of a LinearFM waveform:

 Labeling Radar Signals with Signal Labeler

1-213

This is an example of a SteppedFM waveform:

1 Featured Examples

1-214

Compute and label the PRF of the input signals.

1 Select PRF in the Label Definitions browser.
2 In the Automate Value gallery, select computePRF.
3 Click Auto-Label and select Auto-Label All Signals. In the dialog box that appears, click

OK.

Repeat the above steps for bandwidth, duty cycle and pulsewidth by selecting the corresponding label
definition and autolabeling function.

Signal Labeler computes and labels all signals, but displays labels only for the signals whose check
boxes are selected.

 Labeling Radar Signals with Signal Labeler

1-215

Validate Labeled Signals

View your labeling progress and verify the computed label values are correct. Select WaveFormType
in the Label Definitions browser and click the Dashboard in the Labeler tab.

The plot on the left shows the labeling progress, which is 100% as all signals are labeled with the
WaveFormType label. The plot on the right shows the number of signals with labels for each label
value. You can use the Label Distribution pie chart to assess the accuracy of your labeling and
confirm the results are as expected.

1 Featured Examples

1-216

Next, validate that all pulsewidth label values are distributed around 5e-5. To look at time
distribution of pulsewidth label values, click Definition Selection on the Dashboard tab and select
PulseWidth. Click on the time distribution plot and on the Dashboard tab, set Bins to 3, X Min to
4e-5 and X Max to 6e-5. All signals have a pulsewidth distributed around 5e-5.

 Labeling Radar Signals with Signal Labeler

1-217

Close the dashboard.

Export Labeled Signals

Export the labeled signals to train AI models. On the Labeler tab, click Export and select Labeled
Signal Set To File. In the dialog box that appears, give the name radarDataLss.mat to the
labeled signal set and add an optional short description. Click Export.

Go back to the MATLAB® Command Window. Load the labeled signal set and create signal and label
datastores from the labeled signal set. Create a combined datastore with the signal and label
datastores. Use read or readall to get signal-label pairs that you can use to train AI models.

load radarDataLss.mat
[signalDS,labelDs] = ls.createDatastores('WaveFormType');
combineDs = combine(signalDS,labelDs);

Summary

In this example, you saw how to label the main time and frequency features of noisy pulse radar
signals. You saw how to use synchronized time and time-frequency views to identify frequency
features such as the waveform type. You saw how to register custom autolabeling functions to label
the PRF, pulse width, duty cycle, and pulse bandwidth. You saw how to use the built-in dashboard to
track labeling progress and assess the quality of the labels.

1 Featured Examples

1-218

Supporting Functions

computePRF Function: Calculate the pulse repetition frequency

The computePRF function computes and labels the PRF of the input signal. It uses the pulseperiod
function.

function [labelVal,labelLoc] = computePRF(x,t,parentLabelVal,parentLabelLoc,varargin)
% Function to calculate pulse repetition frequency of a radar pulse

if~isreal(x)
 x = abs(x);
end
pri = pulseperiod(x,t);
labelVal = 1/pri(1);
labelLoc = [];
end

computeBandWidth Function: Calculate the pulse bandwidth

The computeBandWidth function computes and labels the bandwidth of the input signal. It uses the
obw function.

function [labelVal,labelLoc] = computeBandWidth(x,t,parentLabelVal,~,varargin)
% Function to calculate occupied bandwidth of a radar pulse
if~isreal(x)
 x = abs(x);
end
fs = 1/mean(diff(t));
labelVal = obw(x,fs);
labelLoc = [];
end

computeDutyCycle Function: Calculate the pulse duty cycle

The computeDutyCycle function computes and labels the duty cycle of the input signal. It uses the
dutycycle function.

function [labelVal,labelLoc] = computeDutyCycle(x,t,parentLabelVal,parentLabelLoc,varargin)
% Function to calculate duty cycle of a radar pulse
if~isreal(x)
 x = abs(x);
end
labelVal = dutycycle(x,t);
labelLoc = [];
end

computePulseWidth Function: Calculate the pulse width

The computePulseWidth function computes and labels the pulsewidth of the input signal. It uses
the pulsewidth function.

function [labelVal,labelLoc] = computePulseWidth(x,t,parentLabelVal,parentLabelLoc,varargin)
% Function to calculate pulse width of a radar pulse
if~isreal(x)
 x = abs(x);
end
[pw,ic,fc] = pulsewidth(x,t);

 Labeling Radar Signals with Signal Labeler

1-219

labelVal = pw(1);
labelLoc = [ic(1) fc(1)];
end

1 Featured Examples

1-220

Pedestrian and Bicyclist Classification Using Deep Learning
This example shows how to classify pedestrians and bicyclists based on their micro-Doppler
characteristics using a deep learning network and time-frequency analysis.

The movements of different parts of an object placed in front of a radar produce micro-Doppler
signatures that can be used to identify the object. This example uses a convolutional neural network
(CNN) to identify pedestrians and bicyclists based on their signatures.

This example trains the deep learning network using simulated data and then examines how the
network performs at classifying two cases of overlapping signatures.

Synthetic Data Generation by Simulation

The data used to train the network is generated using backscatterPedestrian and
backscatterBicyclist from Radar Toolbox™. These functions simulate the radar backscattering
of signals reflected from pedestrians and bicyclists, respectively.

The helper function helperBackScatterSignals generates a specified number of pedestrian,
bicyclist, and car radar returns. Because the purpose of the example is to classify pedestrians and
bicyclists, this example considers car signatures as noise sources only. To get an idea of the
classification problem to solve, examine one realization of a micro-Doppler signature from a
pedestrian, a bicyclist, and a car. (For each realization, the return signals have dimensions Nfast-by-
Nslow, where Nfast is the number of fast-time samples and Nslow is the number of slow-time samples.
See “Radar Data Cube” for more information.)

numPed = 1; % Number of pedestrian realizations
numBic = 1; % Number of bicyclist realizations
numCar = 1; % Number of car realizations
[xPedRec,xBicRec,xCarRec,Tsamp] = helperBackScatterSignals(numPed,numBic,numCar);

The helper function helperDopplerSignatures computes the short-time Fourier transform (STFT)
of a radar return to generate the micro-Doppler signature. To obtain the micro-Doppler signatures,
use the helper functions to apply the STFT and a preprocessing method to each signal.

[SPed,T,F] = helperDopplerSignatures(xPedRec,Tsamp);
[SBic,~,~] = helperDopplerSignatures(xBicRec,Tsamp);
[SCar,~,~] = helperDopplerSignatures(xCarRec,Tsamp);

Plot the time-frequency maps for the pedestrian, bicyclist, and car realizations.

% Plot the first realization of objects
figure
subplot(1,3,1)
imagesc(T,F,SPed(:,:,1))
ylabel('Frequency (Hz)')
title('Pedestrian')
axis square xy

subplot(1,3,2)
imagesc(T,F,SBic(:,:,1))
xlabel('Time (s)')
title('Bicyclist')
axis square xy

subplot(1,3,3)

 Pedestrian and Bicyclist Classification Using Deep Learning

1-221

imagesc(T,F,SCar(:,:,1))
title('Car')
axis square xy

The normalized spectrograms (STFT absolute values) show that the three objects have quite distinct
signatures. Specifically, the spectrograms of the pedestrian and the bicyclist have rich micro-Doppler
signatures caused by the swing of arms and legs and the rotation of wheels, respectively. By contrast,
in this example, the car is modeled as a point target with rigid body, so the spectrogram of the car
shows that the short-term Doppler frequency shift varies little, indicating little micro-Doppler effect.

Combining Objects

Classifying a single realization as a pedestrian or bicyclist is relatively simple because the pedestrian
and bicyclist micro-Doppler signatures are dissimilar. However, classifying multiple overlapping
pedestrians or bicyclists, with the addition of Gaussian noise or car noise, is much more difficult.

If multiple objects exist in the detection region of the radar at the same time, the received radar
signal is a summation of the detection signals from all the objects. As an example, generate the
received radar signal for a pedestrian and bicyclist with Gaussian background noise.

% Configure Gaussian noise level at the receiver
rx = phased.ReceiverPreamp('Gain',25,'NoiseFigure',10);

xRadarRec = complex(zeros(size(xPedRec)));
for ii = 1:size(xPedRec,3)
 xRadarRec(:,:,ii) = rx(xPedRec(:,:,ii) + xBicRec(:,:,ii));
end

1 Featured Examples

1-222

Then obtain micro-Doppler signatures of the received signal by using the STFT.

[S,~,~] = helperDopplerSignatures(xRadarRec,Tsamp);

figure
imagesc(T,F,S(:,:,1)) % Plot the first realization
axis xy
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Spectrogram of a Pedestrian and a Bicyclist')

Because the pedestrian and bicyclist signatures overlap in time and frequency, differentiating
between the two objects is difficult.

Generate Training Data

In this example, you train a CNN by using data consisting of simulated realizations of objects with
varying properties—for example, bicyclists pedaling at different speeds and pedestrians with different
heights walking at different speeds. Assuming the radar is fixed at the origin, in one realization, one
object or multiple objects are uniformly distributed in a rectangular area of [5, 45] and [–10, 10]
meters along the X and Y axes, respectively.

 Pedestrian and Bicyclist Classification Using Deep Learning

1-223

The other properties of the three objects that are randomly tuned are as follows:

1) Pedestrians

• Height — Uniformly distributed in the interval of [1.5, 2] meters
• Heading — Uniformly distributed in the interval of [–180, 180] degrees
• Speed — Uniformly distributed in the interval of [0, 1.4h] meters/second, where h is the height

value

2) Bicyclists

1 Featured Examples

1-224

• Heading — Uniformly distributed in the interval of [–180, 180] degrees
• Speed — Uniformly distributed in the interval of [1, 10] meters/second
• Gear transmission ratio — Uniformly distributed in the interval of [0.5, 6]
• Pedaling or coasting — 50% probability of pedaling (coasting means that the cyclist is moving

without pedaling)

3) Cars

• Velocity — Uniformly distributed in the interval of [0, 10] meters/second along the X and Y
directions

The input to the convolutional network is micro-Doppler signatures consisting of spectrograms
expressed in decibels and normalized to [0, 1], as shown in this figure:

Radar returns originate from different objects and different parts of objects. Depending on the
configuration, some returns are much stronger than others. Stronger returns tend to obscure weaker
ones. Logarithmic scaling augments the features by making return strengths comparable. Amplitude
normalization helps the CNN converge faster.

The data set contains realizations of the following scenes:

• One pedestrian present in the scene
• One bicyclist present in the scene
• One pedestrian and one bicyclist present in the scene
• Two pedestrians present in the scene
• Two bicyclists present in the scene

Download Data

The data for this example consists of 20,000 pedestrian, 20,000 bicyclist, and 12,500 car signals
generated by using the helper functions helperBackScatterSignals and
helperDopplerSignatures. The signals are divided into two data sets: one without car noise
samples and one with car noise samples.

For the first data set (without car noise), the pedestrian and bicyclist signals were combined,
Gaussian noise was added, and micro-Doppler signatures were computed to generate 5000 signatures
for each of the five scenes to be classified.

In each category, 80% of the signatures (that is, 4000 signatures) are reserved for the training data
set while 20% of the signatures (that is, 1000 signatures) are reserved for the test data set.

To generate the second data set (with car noise), the procedure for the first data set was followed,
except that car noise was added to 50% of the signatures. The proportion of signatures with and
without car noise is the same in the training and test data sets.

 Pedestrian and Bicyclist Classification Using Deep Learning

1-225

Download and unzip the data in your temporary directory, whose location is specified by MATLAB®'s
tempdir command. The data has a size of 21 GB and the download process may take some time. If
you have the data in a folder different from tempdir, change the directory name in the subsequent
instructions.

% Download the data
dataURL = 'https://ssd.mathworks.com/supportfiles/SPT/data/PedBicCarData.zip';
saveFolder = fullfile(tempdir,'PedBicCarData');
zipFile = fullfile(tempdir,'PedBicCarData.zip');
if ~exist(zipFile,'file')
 websave(zipFile,dataURL);
elseif ~exist(saveFolder,'dir')
 % Unzip the data
 unzip(zipFile,tempdir)
end

The data files are as follows:

• trainDataNoCar.mat contains the training data set trainDataNoCar and its label set
trainLabelNoCar.

• testDataNoCar.mat contains the test data set testDataNoCar and its label set
testLabelNoCar.

• trainDataCarNoise.mat contains the training data set trainDataCarNoise and its label set
trainLabelCarNoise.

• testDataCarNoise.mat contains the test data set testDataCarNoise and its label set
testLabelCarNoise.

• TF.mat contains the time and frequency information for the micro-Doppler signatures.

Network Architecture

Create a CNN with five convolution layers and one fully connected layer. The first four convolution
layers are followed by a batch normalization layer, a rectified linear unit (ReLU) activation layer, and
a max pooling layer. In the last convolution layer, the max pooling layer is replaced by an average
pooling layer. The output layer is a classification layer after softmax activation. For network design
guidance, see “Deep Learning Tips and Tricks” (Deep Learning Toolbox).

layers = [
 imageInputLayer([size(S,1),size(S,2),1],'Normalization','none')

 convolution2dLayer(10,16,'Padding','same')
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(10,'Stride',2)

 convolution2dLayer(5,32,'Padding','same')
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(10,'Stride',2)

 convolution2dLayer(5,32,'Padding','same')
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(10,'Stride',2)

 convolution2dLayer(5,32,'Padding','same')

1 Featured Examples

1-226

 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(5,'Stride',2)

 convolution2dLayer(5,32,'Padding','same')
 batchNormalizationLayer
 reluLayer
 averagePooling2dLayer(2,'Stride',2)

 fullyConnectedLayer(5)
 softmaxLayer

 classificationLayer]

layers =
 24x1 Layer array with layers:

 1 '' Image Input 400x144x1 images
 2 '' Convolution 16 10x10 convolutions with stride [1 1] and padding 'same'
 3 '' Batch Normalization Batch normalization
 4 '' ReLU ReLU
 5 '' Max Pooling 10x10 max pooling with stride [2 2] and padding [0 0 0 0]
 6 '' Convolution 32 5x5 convolutions with stride [1 1] and padding 'same'
 7 '' Batch Normalization Batch normalization
 8 '' ReLU ReLU
 9 '' Max Pooling 10x10 max pooling with stride [2 2] and padding [0 0 0 0]
 10 '' Convolution 32 5x5 convolutions with stride [1 1] and padding 'same'
 11 '' Batch Normalization Batch normalization
 12 '' ReLU ReLU
 13 '' Max Pooling 10x10 max pooling with stride [2 2] and padding [0 0 0 0]
 14 '' Convolution 32 5x5 convolutions with stride [1 1] and padding 'same'
 15 '' Batch Normalization Batch normalization
 16 '' ReLU ReLU
 17 '' Max Pooling 5x5 max pooling with stride [2 2] and padding [0 0 0 0]
 18 '' Convolution 32 5x5 convolutions with stride [1 1] and padding 'same'
 19 '' Batch Normalization Batch normalization
 20 '' ReLU ReLU
 21 '' Average Pooling 2x2 average pooling with stride [2 2] and padding [0 0 0 0]
 22 '' Fully Connected 5 fully connected layer
 23 '' Softmax softmax
 24 '' Classification Output crossentropyex

Specify the optimization solver and the hyperparameters to train the CNN using trainingOptions.
This example uses the ADAM optimizer and a mini-batch size of 128. Train the network using either a
CPU or GPU. Using a GPU requires Parallel Computing Toolbox™. To see which GPUs are supported,
see “GPU Support by Release” (Parallel Computing Toolbox). For information on other parameters,
see trainingOptions (Deep Learning Toolbox). This example uses a GPU for training.

options = trainingOptions('adam', ...
 'ExecutionEnvironment','gpu',...
 'MiniBatchSize',128, ...
 'MaxEpochs',30, ...
 'InitialLearnRate',1e-2, ...
 'LearnRateSchedule','piecewise', ...
 'LearnRateDropFactor',0.1, ...
 'LearnRateDropPeriod',10, ...
 'Shuffle','every-epoch', ...

 Pedestrian and Bicyclist Classification Using Deep Learning

1-227

 'Verbose',false, ...
 'Plots','training-progress');

Classify Signatures Without Car Noise

Load the data set without car noise and use the helper function helperPlotTrainData to plot one
example of each of the five categories in the training data set,

load(fullfile(tempdir,'PedBicCarData','trainDataNoCar.mat')) % load training data set
load(fullfile(tempdir,'PedBicCarData','testDataNoCar.mat')) % load test data set
load(fullfile(tempdir,'PedBicCarData','TF.mat')) % load time and frequency information

helperPlotTrainData(trainDataNoCar,trainLabelNoCar,T,F)

Train the CNN that you created. You can view the accuracy and loss during the training process. In
30 epochs, the training process achieves almost 95% accuracy.

trainedNetNoCar = trainNetwork(trainDataNoCar,trainLabelNoCar,layers,options);

1 Featured Examples

1-228

Use the trained network and the classify function to obtain the predicted labels for the test data
set testDataNoCar. The variable predTestLabel contains the network predictions. The network
achieves about 95% accuracy for the test data set without the car noise.

predTestLabel = classify(trainedNetNoCar,testDataNoCar);
testAccuracy = mean(predTestLabel == testLabelNoCar)

testAccuracy = 0.9530

Use a confusion matrix to view detailed information about prediction performance for each category.
The confusion matrix for the trained network shows that, in each category, the network predicts the
labels of the signals in the test data set with a high degree of accuracy.

figure
confusionchart(testLabelNoCar,predTestLabel);

 Pedestrian and Bicyclist Classification Using Deep Learning

1-229

Classify Signatures with Car Noise

To analyze the effects of car noise, classify data containing car noise with the trainedNetNoCar
network, which was trained without car noise.

Load the car-noise-corrupted test data set testDataCarNoise.mat.

load(fullfile(tempdir,'PedBicCarData','testDataCarNoise.mat'))

Input the car-noise-corrupted test data set to the network. The prediction accuracy for the test data
set with the car noise drops significantly, to around 70%, because the network never saw training
samples containing car noise.

predTestLabel = classify(trainedNetNoCar,testDataCarNoise);
testAccuracy = mean(predTestLabel == testLabelCarNoise)

testAccuracy = 0.7176

The confusion matrix shows that most prediction errors occur when the network takes in scenes from
the "pedestrian," "pedestrian+pedestrian," or "pedestrian+bicyclist" classes and classifies them as
"bicyclist."

confusionchart(testLabelCarNoise,predTestLabel);

1 Featured Examples

1-230

Car noise significantly impedes the performance of the classifier. To solve this problem, train the CNN
using data that contains car noise.

Retrain CNN by Adding Car Noise to Training Data Set

Load the car-noise-corrupted training data set trainDataCarNoise.mat.

load(fullfile(tempdir,'PedBicCarData','trainDataCarNoise.mat'))

Retrain the network by using the car-noise-corrupted training data set. In 30 epochs, the training
process achieves almost 90% accuracy.

trainedNetCarNoise = trainNetwork(trainDataCarNoise,trainLabelCarNoise,layers,options);

 Pedestrian and Bicyclist Classification Using Deep Learning

1-231

Input the car-noise-corrupted test data set to the network trainedNetCarNoise. The prediction
accuracy is about 87%, which is approximately 15% higher than the performance of the network
trained without car noise samples.

predTestLabel = classify(trainedNetCarNoise,testDataCarNoise);
testAccuracy = mean(predTestLabel == testLabelCarNoise)

testAccuracy = 0.8728

The confusion matrix shows that the network trainedNetCarNoise performs much better at
predicting scenes with one pedestrian and scenes with two pedestrians.

confusionchart(testLabelCarNoise,predTestLabel);

1 Featured Examples

1-232

Case Study

To better understand the performance of the network, examine its performance in classifying
overlapping signatures. This section is just for illustration. Due to the non-deterministic behavior of
GPU training, you may not get the same classification results in this section when you rerun this
example.

For example, signature #4 of the car-noise-corrupted test data, which does not have car noise, has
two bicyclists with overlapping micro-Doppler signatures. The network correctly predicts that the
scene has two bicyclists.

k = 4;
imagesc(T,F,testDataCarNoise(:,:,:,k))
axis xy
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Ground Truth: '+string(testLabelCarNoise(k))+', Prediction: '+string(predTestLabel(k)))

 Pedestrian and Bicyclist Classification Using Deep Learning

1-233

From the plot, the signature appears to be from only one bicyclist. Load the data
CaseStudyData.mat of the two objects in the scene. The data contains return signals summed along
the fast time. Apply the STFT to each signal.

load CaseStudyData.mat
M = 200; % FFT window length
beta = 6; % window parameter
w = kaiser(M,beta); % kaiser window
R = floor(1.7*(M-1)/(beta+1)); % ROUGH estimate
noverlap = M-R; % overlap length

[Sc,F,T] = stft(x,1/Tsamp,'Window',w,'FFTLength',M*2,'OverlapLength',noverlap);

for ii = 1:2
 subplot(1,2,ii)
 imagesc(T,F,10*log10(abs(Sc(:,:,ii))))
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 title('Bicyclist')
 axis square xy
 title(['Bicyclist ' num2str(ii)])
 c = colorbar;
 c.Label.String = 'dB';
end

1 Featured Examples

1-234

The amplitudes of the Bicyclist 2 signature are much weaker than those of Bicyclist 1, and the
signatures of the two bicyclists overlap. When they overlap, the two signatures cannot be visually
distinguished. However, the neural network classifies the scene correctly.

Another case of interest is when the network confuses car noise with a bicyclist, as in signature #267
of the car-noise-corrupted test data:

figure
k = 267;
imagesc(T,F,testDataCarNoise(:,:,:,k))
axis xy
xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Ground Truth: '+string(testLabelCarNoise(k))+', Prediction: '+string(predTestLabel(k)))

 Pedestrian and Bicyclist Classification Using Deep Learning

1-235

The signature of the bicyclist is weak compared to that of the car, and the signature has spikes from
the car noise. Because the signature of the car closely resembles that of a bicyclist pedaling or a
pedestrian walking at a low speed, and has little micro-Doppler effect, there is a high possibility that
the network will classify the scene incorrectly.

References

[1] Chen, V. C. The Micro-Doppler Effect in Radar. London: Artech House, 2011.

[2] Gurbuz, S. Z., and Amin, M. G. "Radar-Based Human-Motion Recognition with Deep Learning:
Promising Applications for Indoor Monitoring." IEEE Signal Processing Magazine. Vol. 36, Issue 4,
2019, pp. 16–28.

[3] Belgiovane, D., and C. C. Chen. "Micro-Doppler Characteristics of Pedestrians and Bicycles for
Automotive Radar Sensors at 77 GHz." In 11th European Conference on Antennas and Propagation
(EuCAP), 2912–2916. Paris: European Association on Antennas and Propagation, 2017.

[4] Angelov, A., A. Robertson, R. Murray-Smith, and F. Fioranelli. "Practical Classification of Different
Moving Targets Using Automotive Radar and Deep Neural Networks." IET Radar, Sonar &
Navigation. Vol. 12, Number 10, 2017, pp. 1082–1089.

[5] Parashar, K. N., M. C. Oveneke, M. Rykunov, H. Sahli, and A. Bourdoux. "Micro-Doppler Feature
Extraction Using Convolutional Auto-Encoders for Low Latency Target Classification." In 2017 IEEE
Radar Conference (RadarConf), 1739–1744. Seattle: IEEE, 2017.

1 Featured Examples

1-236

Radar Target Classification Using Machine Learning and Deep
Learning

This example shows how to classify radar returns with both machine and deep learning approaches.
The machine learning approach uses wavelet scattering feature extraction coupled with a support
vector machine. Additionally, two deep learning approaches are illustrated: transfer learning using
SqueezeNet and a Long Short-Term Memory (LSTM) recurrent neural network. Note that the data set
used in this example does not require advanced techniques but the workflow is described because the
techniques can be extended to more complex problems.

Introduction

Target classification is an important function in modern radar systems. This example uses machine
and deep learning to classify radar echoes from a cylinder and a cone. Although this example uses the
synthesized I/Q samples, the workflow is applicable to real radar returns.

RCS Synthesis

The next section shows how to create synthesized data to train the learning algorithms.

The following code simulates the RCS pattern of a cylinder with a radius of 1 meter and a height of
10 meters. The operating frequency of the radar is 850 MHz.

c = 3e8;
fc = 850e6;
[cylrcs,az,el] = rcscylinder(1,1,10,c,fc);
helperTargetRCSPatternPlot(az,el,cylrcs);

 Radar Target Classification Using Machine Learning and Deep Learning

1-237

The pattern can then be applied to a backscatter radar target to simulate returns from different
aspects angles.

cyltgt = phased.BackscatterRadarTarget('PropagationSpeed',c,...
 'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,'RCSPattern',cylrcs);

The following plot shows how to simulate 100 returns of the cylinder over time. It is assumed that the
cylinder under goes a motion that causes small vibrations around bore sight, as a result, the aspect
angle changes from one sample to the next.

rng default;
N = 100;
az = 2*randn(1,N);
el = 2*randn(1,N);
cylrtn = cyltgt(ones(1,N),[az;el]);

plot(mag2db(abs(cylrtn)));
xlabel('Time Index')
ylabel('Target Return (dB)');
title('Target Return for Cylinder');

1 Featured Examples

1-238

The return of the cone can be generated similarly. To create the training set, the above process is
repeated for 5 arbitrarily selected cylinder radii. In addition, for each radius, 10 motion profiles are
simulated by varying the incident angle following 10 randomly generated sinusoid curve around
boresight. There are 701 samples in each motion profile, so there are 701-by-50 samples. The process
is repeated for the cylinder target, which results in a 701-by-100 matrix of training data with 50
cylinder and 50 cone profiles. In the test set, we use 25 cylinder and 25 cone profiles to create a 701-
by-50 training set. Because of the long computation time, the training data is precomputed and
loaded below.

load('RCSClassificationReturnsTraining');
load('RCSClassificationReturnsTest');

As an example, the next plot shows the return for one of the motion profiles from each shape. The
plots show how the values change over time for both the incident azimuth angles and the target
returns.

subplot(2,2,1)
plot(cylinderAspectAngle(1,:))
ylim([-90 90])
grid on
title('Cylinder Aspect Angle vs. Time'); xlabel('Time Index'); ylabel('Aspect Angle (degrees)');
subplot(2,2,3)
plot(RCSReturns.Cylinder_1); ylim([-50 50]);
grid on
title('Cylinder Return'); xlabel('Time Index'); ylabel('Target Return (dB)');
subplot(2,2,2)
plot(coneAspectAngle(1,:)); ylim([-90 90]); grid on;

 Radar Target Classification Using Machine Learning and Deep Learning

1-239

title('Cone Aspect Angle vs. Time'); xlabel('Time Index'); ylabel('Aspect Angle (degrees)');
subplot(2,2,4);
plot(RCSReturns.Cone_1); ylim([-50 50]); grid on;
title('Cone Return'); xlabel('Time Index'); ylabel('Target Return (dB)');

Wavelet Scattering

In the wavelet scattering feature extractor, data is propagated through a series of wavelet
transforms, nonlinearities, and averaging to produce low-variance representations of time series.
Wavelet time scattering yields signal representations insensitive to shifts in the input signal without
sacrificing class discriminability.

The key parameters to specify in a wavelet time scattering network are the scale of the time
invariant, the number of wavelet transforms, and the number of wavelets per octave in each of the
wavelet filter banks. In many applications, the cascade of two filter banks is sufficient to achieve good
performance. In this example, we construct a wavelet time scattering network with the two filter
banks: 4 wavelets per octave in the first filter bank and 2 wavelets per octave in the second filter
bank. The invariance scale is set to 701 samples, the length of the data.

sn = waveletScattering('SignalLength',701,'InvarianceScale',701,'QualityFactors',[4 2]);

Next, we obtain the scattering transforms of both the training and test sets.

sTrain = sn.featureMatrix(RCSReturns{:,:},'transform','log');
sTest = sn.featureMatrix(RCSReturnsTest{:,:},'transform','log');

For this example, use the mean of the scattering coefficients taken along each path.

1 Featured Examples

1-240

TrainFeatures = squeeze(mean(sTrain,2))';
TestFeatures = squeeze(mean(sTest,2))';

Create the labels for training and learning

TrainLabels = repelem(categorical({'Cylinder','Cone'}),[50 50])';
TestLabels = repelem(categorical({'Cylinder','Cone'}),[25 25])';

Model Training

Fit a support vector machine model with a quadratic kernel to the scattering features and obtain the
cross-validation accuracy.

template = templateSVM('KernelFunction', 'polynomial', ...
 'PolynomialOrder', 2, ...
 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true);
classificationSVM = fitcecoc(...
 TrainFeatures, ...
 TrainLabels, ...
 'Learners', template, ...
 'Coding', 'onevsone', ...
 'ClassNames', categorical({'Cylinder','Cone'}));
partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy = (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100

validationAccuracy = 100

Target Classification

Using the trained SVM, classify the scattering features obtained from the test set.

predLabels = predict(classificationSVM,TestFeatures);
accuracy = sum(predLabels == TestLabels)/numel(TestLabels)*100

accuracy = 100

Plot the confusion matrix.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(TestLabels,predLabels);
ccDCNN.Title = 'Confusion Chart';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';

 Radar Target Classification Using Machine Learning and Deep Learning

1-241

For more complex data sets, a deep learning workflow may improve performance.

Transfer Learning with a CNN

SqueezeNet is a deep convolutional neural network (CNN) trained for images in 1,000 classes as
used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In this example, we reuse
the pre-trained SqueezeNet to classify radar returns belonging to one of two classes.

Load SqueezeNet.

snet = squeezenet;

SqueezeNet consists of 68 layers. Like all DCNNs, SqueezeNet cascades convolutional operators
followed by nonlinearities and pooling, or averaging. SqueezeNet expects an image input of size 227-
by-227-by-3, which you can see with the following code.

snet.Layers(1)

ans =
 ImageInputLayer with properties:

 Name: 'data'
 InputSize: [227 227 3]

 Hyperparameters
 DataAugmentation: 'none'
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: [1×1×3 single]

1 Featured Examples

1-242

Additionally, SqueezeNet is configured to recognized 1,000 different classes, which you can see with
the following code.

snet.Layers(68)

ans =
 ClassificationOutputLayer with properties:

 Name: 'ClassificationLayer_predictions'
 Classes: [1000×1 categorical]
 ClassWeights: 'none'
 OutputSize: 1000

 Hyperparameters
 LossFunction: 'crossentropyex'

In a subsequent section, we will modify select layers of SqueezeNet in order to apply it to our
classification problem.

Continuous Wavelet Transform

SqueezeNet is designed to discriminate differences in images and classify the results. Therefore, in
order to use SqueezeNet to classify radar returns, we must transform the 1-D radar return time
series into an image. A common way to do this is to use a time-frequency representation (TFR). There
are a number of choices for a time-frequency representation of a signal and which one is most
appropriate depends on the signal characteristics. To determine which TFR may be appropriate for
this problem, randomly choose and plot a few radar returns from each class.

rng default;
idxCylinder = randperm(50,2);
idxCone = randperm(50,2)+50;

It is evident that the radar returns previously shown are characterized by slowing varying changes
punctuated by large transient decreases as described earlier. A wavelet transform is ideally suited to
sparsely representing such signals. Wavelets shrink to localize transient phenomena with high
temporal resolution and stretch to capture slowly varying signal structure. Obtain and plot the
continuous wavelet transform of one of the cylinder returns.

cwt(RCSReturns{:,idxCylinder(1)},'VoicesPerOctave',8)

 Radar Target Classification Using Machine Learning and Deep Learning

1-243

The CWT simultaneously captures both the slowly varying (low frequency) fluctuations and the
transient phenomena. Contrast the CWT of the cylinder return with one from a cone target.

cwt(RCSReturns{:,idxCone(2)},'VoicesPerOctave',8);

1 Featured Examples

1-244

Because of the apparent importance of the transients in determining whether the target return
originates from a cylinder or cone target, we select the CWT as the ideal TFR to use. After obtaining
the CWT for each target return, we make images from the CWT of each radar return. These images
are resized to be compatible with SqueezeNet's input layer and we leverage SqueezeNet to classify
the resulting images.

Image Preparation

The helper function, helpergenWaveletTFImg, obtains the CWT for each radar return, reshapes
the CWT to be compatible with SqueezeNet, and writes the CWT as a jpeg file. To run
helpergenWaveletTFImg, choose a parentDir where you have write permission. This example
uses tempdir, but you may use any folder on your machine where you have write permission. The
helper function creates Training and Test set folders under parentDir as well as creating
Cylinder and Cone subfolders under both Training and Test. These folders are populated with
jpeg images to be used as inputs to SqueezeNet.

parentDir = tempdir;
helpergenWaveletTFImg(parentDir,RCSReturns,RCSReturnsTest)

Generating Time-Frequency Representations...Please Wait
 Creating Cylinder Time-Frequency Representations ... Done
 Creating Cone Time-Frequency Representations ... Done
 Creating Cylinder Time-Frequency Representations ... Done
 Creating Cone Time-Frequency Representations ... Done

Now use imageDataStore to manage file access from the folders in order to train SqueezeNet.
Create datastores for both the training and test data.

 Radar Target Classification Using Machine Learning and Deep Learning

1-245

trainingData= imageDatastore(fullfile(parentDir,'Training'), 'IncludeSubfolders', true,...
 'LabelSource', 'foldernames');
testData = imageDatastore(fullfile(parentDir,'Test'),'IncludeSubfolders',true,...
 'LabelSource','foldernames');

In order to use SqueezeNet with this binary classification problem, we need to modify a couple layers.
First, we change the last learnable layer in SqueezeNet (layer 64) to have the same number of 1-by-1
convolutions as our new number of classes, 2.

lgraphSqueeze = layerGraph(snet);
convLayer = lgraphSqueeze.Layers(64);
numClasses = numel(categories(trainingData.Labels));
newLearnableLayer = convolution2dLayer(1,numClasses, ...
 'Name','binaryconv', ...
 'WeightLearnRateFactor',10, ...
 'BiasLearnRateFactor',10);
lgraphSqueeze = replaceLayer(lgraphSqueeze,convLayer.Name,newLearnableLayer);
classLayer = lgraphSqueeze.Layers(end);
newClassLayer = classificationLayer('Name','binary');
lgraphSqueeze = replaceLayer(lgraphSqueeze,classLayer.Name,newClassLayer);

Finally, set the options for re-training SqueezeNet. Set the initial learn rate to 1e-4, set the maximum
number of epochs to 15, and the minibatch size to 10. Use stochastic gradient descent with
momentum.

ilr = 1e-4;
mxEpochs = 15;
mbSize =10;
opts = trainingOptions('sgdm', 'InitialLearnRate', ilr, ...
 'MaxEpochs',mxEpochs , 'MiniBatchSize',mbSize, ...
 'Plots', 'training-progress','ExecutionEnvironment','cpu');

Train the network. If you have a compatible GPU, trainNetwork automatically utilizes the GPU and
training should complete in less than one minute. If you do not have a compatible GPU,
trainNetwork utilizes the CPU and training should take around five minutes. Training times do vary
based on a number of factors. In this case, the training takes place on a cpu by setting the
ExecutionEnvironment parameter to cpu.

CWTnet = trainNetwork(trainingData,lgraphSqueeze,opts);

Initializing input data normalization.

|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|

| 1 | 1 | 00:00:06 | 60.00% | 2.6639 | 1.0000e-04 |

| 5 | 50 | 00:01:08 | 100.00% | 0.0001 | 1.0000e-04 |

| 10 | 100 | 00:02:11 | 100.00% | 0.0002 | 1.0000e-04 |

| 15 | 150 | 00:03:12 | 100.00% | 2.2264e-05 | 1.0000e-04 |

|==|

Use the trained network to predict target returns in the held-out test set.

1 Featured Examples

1-246

predictedLabels = classify(CWTnet,testData,'ExecutionEnvironment','cpu');
accuracy = sum(predictedLabels == testData.Labels)/50*100

accuracy = 100

Plot the confusion chart along with the precision and recall. In this case, 100% of the test samples are
classified correctly.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(testData.Labels,predictedLabels);
ccDCNN.Title = 'Confusion Chart';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';

LSTM

In the final section of this example, an LSTM workflow is described. First the LSTM layers are
defined:

LSTMlayers = [...
 sequenceInputLayer(1)
 bilstmLayer(100,'OutputMode','last')
 fullyConnectedLayer(2)
 softmaxLayer
 classificationLayer
];
options = trainingOptions('adam', ...
 'MaxEpochs',30, ...
 'MiniBatchSize', 150, ...
 'InitialLearnRate', 0.01, ...

 Radar Target Classification Using Machine Learning and Deep Learning

1-247

 'GradientThreshold', 1, ...
 'plots','training-progress', ...
 'Verbose',false,'ExecutionEnvironment','cpu');
trainLabels = repelem(categorical({'cylinder','cone'}),[50 50]);
trainLabels = trainLabels(:);
trainData = num2cell(table2array(RCSReturns)',2);
testData = num2cell(table2array(RCSReturnsTest)',2);
testLabels = repelem(categorical({'cylinder','cone'}),[25 25]);
testLabels = testLabels(:);
RNNnet = trainNetwork(trainData,trainLabels,LSTMlayers,options);

The accuracy for this system is also plotted.

predictedLabels = classify(RNNnet,testData,'ExecutionEnvironment','cpu');
accuracy = sum(predictedLabels == testLabels)/50*100

accuracy = 100

Conclusion

This example presents a workflow for performing radar target classification using machine and deep
learning techniques. Although this example used synthesized data to do training and testing, it can be
easily extended to accommodate real radar returns. Because of the signal characteristics, wavelet
techniques were used for both the machine learning and CNN approaches.

With this dataset we were also obtained to achieve similar accuracy by just feeding the raw data into
a LSTM. In more complicated datasets, the raw data may be too inherently variable for the model to
learn robust features from the raw data and you may have to resort to feature extraction prior to
using a LSTM.

1 Featured Examples

1-248

Radar and Communications Waveform Classification Using
Deep Learning

This example shows how to classify radar and communications waveforms using the Wigner-Ville
distribution (WVD) and a deep convolutional neural network (CNN).

Modulation classification is an important function for an intelligent receiver. Modulation classification
has numerous applications, such as cognitive radar and software-defined radio. Typically, to identify
these waveforms and classify them by modulation type it is necessary to define meaningful features
and input them into a classifier. While effective, this procedure can require extensive effort and
domain knowledge to yield an accurate classification. This example explores a framework to
automatically extract time-frequency features from signals and perform signal classification using a
deep learning network.

The first part of this example simulates a radar classification system that synthesizes three pulsed
radar waveforms and classifies them. The radar waveforms are:

• Rectangular
• Linear frequency modulation (LFM)
• Barker Code

A radar classification system does not exist in isolation. Rather, it resides in an increasingly occupied
frequency spectrum, competing with other transmitted sources such as communications systems,
radio, and navigation systems. The second part of this example extends the network to include
additional communication modulation types. In addition to the first set of radar waveforms, the
extended network synthesizes and identifies these communication waveforms:

• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast frequency modulation (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

This example primarily focuses on radar waveforms, with the classification being extended to include
a small set of amplitude and frequency modulation communications signals. See “Modulation
Classification with Deep Learning” (Communications Toolbox) for a full workflow of modulation
classification with a wide array of communication signals.

Generate Radar Waveforms

Generate 3000 signals with a sample rate of 100 MHz for each modulation type. Use
phased.RectangularWaveform for rectangular pulses, phased.LinearFMWaveform for LFM, and
phased.PhaseCodedWaveform for phase coded pulses with Barker code.

Each signal has unique parameters and is augmented with various impairments to make it more
realistic. For each waveform, the pulse width and repetition frequency will be randomly generated.
For LFM waveforms, the sweep bandwidth and direction are randomly generated. For Barker
waveforms, the chip width and number are generated randomly. All signals are impaired with white
Gaussian noise using the awgn function with a random signal-to-noise ratio in the range of [–6, 30]
dB. A frequency offset with a random carrier frequency in the range of [Fs/6, Fs/5] is applied to

 Radar and Communications Waveform Classification Using Deep Learning

1-249

each signal using the comm.PhaseFrequencyOffset object. Lastly, each signal is passed through a
multipath Rician fading channel, comm.RicianChannel.

The provided helper function helperGenerateRadarWaveforms creates and augments each
modulation type.

rng default
[wav, modType] = helperGenerateRadarWaveforms();

Plot the Fourier transform for a few of the LFM waveforms to show the variances in the generated
set.

idLFM = find(modType == "LFM",3);
nfft = 2^nextpow2(length(wav{1}));
f = (0:(nfft/2-1))/nfft*100e6;

figure
subplot(1,3,1)
Z = fft(wav{idLFM(1)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square
subplot(1,3,2)
Z = fft(wav{idLFM(2)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square
subplot(1,3,3)
Z = fft(wav{idLFM(3)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square

1 Featured Examples

1-250

Feature Extraction Using Wigner-Ville Distribution

To improve the classification performance of machine learning algorithms, a common approach is to
input extracted features in place of the original signal data. The features provide a representation of
the input data that makes it easier for a classification algorithm to discriminate across the classes.
The Wigner-Ville distribution represents a time-frequency view of the original data that is useful for
time varying signals. The high resolution and locality in both time and frequency provide good
features for the identification of similar modulation types. Use the wvd function to compute the
smoothed pseudo WVD for each of the modulation types.

figure
subplot(1,3,1)
wvd(wav{find(modType == "Rect",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('Rect')
subplot(1,3,2)
wvd(wav{find(modType == "LFM",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('LFM')
subplot(1,3,3)
wvd(wav{find(modType == "Barker",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('Barker')

 Radar and Communications Waveform Classification Using Deep Learning

1-251

To store the smoothed-pseudo Wigner-Ville distribution of the signals, first create the directory
TFDDatabase inside your temporary directory tempdir. Then create subdirectories in
TFDDatabase for each modulation type. For each signal, compute the smoothed-pseudo Wigner-Ville
distribution, and downsample the result to a 227-by-227 matrix. Save the matrix is a .png image file
in the subdirectory corresponding to the modulation type of the signal. The helper function
helperGenerateTFDfiles performs all these steps. This process will take several minutes due to
the large database size and the complexity of the wvd algorithm. You can replace tempdir with
another directory where you have write permission.

parentDir = tempdir;
dataDir = 'TFDDatabase';
helperGenerateTFDfiles(parentDir,dataDir,wav,modType,100e6)

Create an image datastore object for the created folder to manage the image files used for training
the deep learning network. This step avoids having to load all images into memory. Specify the label
source to be folder names. This assigns each signal's modulation type according to the folder name.

folders = fullfile(parentDir,dataDir,{'Rect','LFM','Barker'});
imds = imageDatastore(folders,...
 'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNet);

The network is trained with 80% of the data and tested on with 10%. The remaining 10% is used for
validation. Use the splitEachLabel function to divide the imageDatastore into training,
validation, and testing sets.

[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

1 Featured Examples

1-252

Set Up Deep Learning Network

Before the deep learning network can be trained, define the network architecture. This example
utilizes transfer learning SqueezeNet, a deep CNN created for image classification. Transfer learning
is the process of retraining an existing neural network to classify new targets. This network accepts
image input of size 227-by-227-by-3. Prior to input to the network, the custom read function
readTFDForSqueezeNet will transform the two-dimensional time-frequency distribution to an RGB
image of the correct size. SqueezeNet performs classification of 1000 categories in its default
configuration.

Load SqueezeNet.

net = squeezenet;

Extract the layer graph from the network. Confirm that SqueezeNet is configured for images of size
227-by-227-by-3.

lgraphSqz = layerGraph(net);
lgraphSqz.Layers(1)

ans =
 ImageInputLayer with properties:

 Name: 'data'
 InputSize: [227 227 3]

 Hyperparameters
 DataAugmentation: 'none'
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: [1×1×3 single]

To tune SqueezeNet for our needs, three of the last six layers need to be modified to classify the three
radar modulation types of interest. Inspect the last six network layers.

lgraphSqz.Layers(end-5:end)

ans =
 6×1 Layer array with layers:

 1 'drop9' Dropout 50% dropout
 2 'conv10' Convolution 1000 1×1×512 convolutions with stride [1 1] and padding [0 0 0 0]
 3 'relu_conv10' ReLU ReLU
 4 'pool10' Global Average Pooling Global average pooling
 5 'prob' Softmax softmax
 6 'ClassificationLayer_predictions' Classification Output crossentropyex with 'tench' and 999 other classes

Replace the 'drop9' layer, the last dropout layer in the network, with a dropout layer of probability
0.6.

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

The last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10'. Replace the layer
with a new convolutional layer with the number of filters equal to the number of modulation types.
Also increase the learning rate factors of the new layer.

 Radar and Communications Waveform Classification Using Deep Learning

1-253

numClasses = 3;
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
 'Name','new_conv', ...
 'WeightLearnRateFactor',20, ...
 'BiasLearnRateFactor',20);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

Replace the classification layer with a new one without class labels.

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Inspect the last six layers of the network. Confirm the dropout, convolutional, and output layers have
been changed.

lgraphSqz.Layers(end-5:end)

ans =
 6×1 Layer array with layers:

 1 'new_dropout' Dropout 60% dropout
 2 'new_conv' Convolution 3 1×1 convolutions with stride [1 1] and padding [0 0 0 0]
 3 'relu_conv10' ReLU ReLU
 4 'pool10' Global Average Pooling Global average pooling
 5 'prob' Softmax softmax
 6 'new_classoutput' Classification Output crossentropyex

Choose options for the training process that ensures good network performance. Refer to the
trainingOptions documentation for a description of each option.

options = trainingOptions('sgdm', ...
 'MiniBatchSize',128, ...
 'MaxEpochs',5, ...
 'InitialLearnRate',1e-3, ...
 'Shuffle','every-epoch', ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'ValidationData',imdsValidation);

Train the Network

Use the trainNetwork command to train the created CNN. Because of the dataset's large size, the
process may take several minutes. If your machine has a GPU and Parallel Computing Toolbox™, then
MATLAB automatically uses the GPU for training. Otherwise, it uses the CPU. The training accuracy
plots in the figure show the progress of the network's learning across all iterations. On the three
radar modulation types, the network classifies almost 100% of the training signals correctly.

trainedNet = trainNetwork(imdsTrain,lgraphSqz,options);

Evaluate Performance on Radar Waveforms

Use the trained network to classify the testing data using the classify command. A confusion
matrix is one method to visualize classification performance. Use the confusionchart command to
calculate and visualize the classification accuracy. For the three modulation types input to the
network, almost all of the phase coded, LFM, and rectangular waveforms are correctly identified by
the network.

1 Featured Examples

1-254

predicted = classify(trainedNet,imdsTest);
figure
confusionchart(predicted,imdsTest.Labels,'Normalization','column-normalized')

Generate Communications Waveforms and Extract Features

The frequency spectrum of a radar classification system must compete with other transmitted
sources. Let's see how the created network extends to incorporate other simulated modulation types.
Another MathWorks example, “Modulation Classification with Deep Learning” (Communications
Toolbox), performs modulation classification of several different modulation types using
Communications Toolbox™. The helper function helperGenerateCommsWaveforms generates and
augments a subset of the modulation types used in that example. Since the WVD loses phase
information, a subset of only the amplitude and frequency modulation types are used.

See the example link for an in-depth description of the workflow necessary for digital and analog
modulation classification and the techniques used to create these waveforms. For each modulation
type, use wvd to extract time-frequency features and visualize.

[wav, modType] = helperGenerateCommsWaveforms();

figure
subplot(2,3,1)
wvd(wav{find(modType == "GFSK",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('GFSK')
subplot(2,3,2)
wvd(wav{find(modType == "CPFSK",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('CPFSK')

 Radar and Communications Waveform Classification Using Deep Learning

1-255

subplot(2,3,3)
wvd(wav{find(modType == "B-FM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('B-FM')
subplot(2,3,4)
wvd(wav{find(modType == "SSB-AM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('SSB-AM')
subplot(2,3,5)
wvd(wav{find(modType == "DSB-AM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('DSB-AM')

Use the helper function helperGenerateTFDfiles again to compute the smoothed pseudo WVD for
each input signal. Create an image datastore object to manage the image files of all modulation types.

helperGenerateTFDfiles(parentDir,dataDir,wav,modType,200e3)
folders = fullfile(parentDir,dataDir,{'Rect','LFM','Barker','GFSK','CPFSK','B-FM','SSB-AM','DSB-AM'});
imds = imageDatastore(folders,...
 'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNet);

Again, divide the data into a training set, a validation set, and a testing set using the
splitEachLabel function.

rng default
[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

Adjust Deep Learning Network Architecture

Previously, the network architecture was set up to classify three modulation types. This must be
updated to allow classification of all eight modulation types of both radar and communication signals.

1 Featured Examples

1-256

This is a similar process as before, with the exception that the fullyConnectedLayer now requires
an output size of eight.

numClasses = 8;
net = squeezenet;
lgraphSqz = layerGraph(net);

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
 'Name','new_conv', ...
 'WeightLearnRateFactor',20, ...
 'BiasLearnRateFactor',20);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Create a new set of training options.

options = trainingOptions('sgdm', ...
 'MiniBatchSize',150, ...
 'MaxEpochs',10, ...
 'InitialLearnRate',1e-4, ...
 'Shuffle','every-epoch', ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'ValidationData',imdsValidation);

Use the trainNetwork command to train the created CNN. For all modulation types, the training
converges with an accuracy of about 95% correct classification.

trainedNet = trainNetwork(imdsTrain,lgraphSqz,options);

Evaluate Performance on All Signals

Use the classify command to classify the signals held aside for testing. Again, visualize the
performance using confusionchart.

predicted = classify(trainedNet,imdsTest);
figure;
confusionchart(predicted,imdsTest.Labels,'Normalization','column-normalized')

 Radar and Communications Waveform Classification Using Deep Learning

1-257

For the eight modulation types input to the network, over 99% of B-FM, CPFSK, GFSK, Barker, and
LFM modulation types were correctly classified. On average, over 85% of AM signals were correctly
identified. From the confusion matrix, a high percentage of SSB-AM signals were misclassified as
DSB-AM, and DSB-AM signals as SSB-AM.

Let us investigate a few of these misclassifications to gain insight into the network's learning process.
Use the readimage function on the image datastore to extract from the test dataset a single image
from each class. The displayed WVD visually looks very similar. Since DSB-AM and SSB-AM signals
have a very similar signature, this explains in part the network's difficulty in correctly classifying
these two types. Further signal processing could make the differences between these two modulation
types clearer to the network and result in improved classification.

DSB_DSB = readimage(imdsTest,find((imdsTest.Labels == 'DSB-AM') & (predicted == 'DSB-AM'),1));
DSB_SSB = readimage(imdsTest,find((imdsTest.Labels == 'DSB-AM') & (predicted == 'SSB-AM'),1));
SSB_DSB = readimage(imdsTest,find((imdsTest.Labels == 'SSB-AM') & (predicted == 'DSB-AM'),1));
SSB_SSB = readimage(imdsTest,find((imdsTest.Labels == 'SSB-AM') & (predicted == 'SSB-AM'),1));

figure
subplot(2,2,1)
imagesc(DSB_DSB(:,:,1))
axis square; title({'Actual Class: DSB-AM','Predicted Class: DSB-AM'})
subplot(2,2,2)
imagesc(DSB_SSB(:,:,1))
axis square; title({'Actual Class: DSB-AM','Predicted Class: SSB-AM'})
subplot(2,2,3)
imagesc(SSB_DSB(:,:,1))
axis square; title({'Actual Class: SSB-AM','Predicted Class: DSB-AM'})

1 Featured Examples

1-258

subplot(2,2,4)
imagesc(SSB_SSB(:,:,1))
axis square; title({'Actual Class: SSB-AM','Predicted Class: SSB-AM'})

Summary

This example showed how radar and communications modulation types can be classified by using
time-frequency techniques and a deep learning network. Further efforts for additional improvement
could be investigated by utilizing time-frequency analysis available in Wavelet Toolbox™ and
additional Fourier analysis available in Signal Processing Toolbox™.

References

[1] Brynolfsson, Johan, and Maria Sandsten. "Classification of one-dimensional non-stationary signals
using the Wigner-Ville distribution in convolutional neural networks." 25th European Signal
Processing Conference (EUSIPCO). IEEE, 2017.

[2] Liu, Xiaoyu, Diyu Yang, and Aly El Gamal. "Deep neural network architectures for modulation
classification." 51st Asilomar Conference on Signals, Systems and Computers. 2017.

[3] `Wang, Chao, Jian Wang, and Xudong Zhang. "Automatic radar waveform recognition based on
time-frequency analysis and convolutional neural network." IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2017.

 Radar and Communications Waveform Classification Using Deep Learning

1-259

Spaceborne Synthetic Aperture Radar Performance Prediction
This example shows how to assess the performance of a spaceborne synthetic aperture radar (SAR)
and compares theoretical limits with achievable requirements for a SAR system. SAR uses the motion
of the radar antenna over a target region to provide finer azimuth resolution. Given the main
parameters of both the radar (e.g. the operating frequency, antenna size, and bandwidth) and the
platform it is mounted on (e.g. altitude, velocity, mounting position), we'll determine performance
parameters such as the footprint, the azimuth and range resolution, the signal to-noise ratio (SNR) of
the SAR image, and the noise equivalent reflectivity (NER).

SAR System Parameters and Conventions

We consider a radar on a low Earth orbit (LEO) satellite operating in C-band at 5.5 GHz with a pulse
bandwidth of 500 MHz. The satellite is at an altitude of 565 km and moves with a velocity of 7.0 km/s.
The radar antenna dimensions are 5.2 m (along azimuth) by 1.1 m in height. We assume that returns
are processed for 0.8 sec and that the squint angle is 90 degrees.

1 Featured Examples

1-260

% Platform configuration
v = 7e3; % Velocity (m/s)
h = 565e3; % Altitude (m)

% Radar signal configuration
freq = 5.5e9; % Radar frequency (Hz)
lambda = freq2wavelen(freq); % Wavelength (m)
bw = 500e6; % Bandwidth (Hz)
proctime = 0.8; % Processing time (sec)

% Antenna dimensions

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-261

daz = 5.2; % Along azimuth (m)
del = 1.1; % Along height (m)

Real Antenna Beamwidth and Gain

We use the ap2beamwidth function to calculate the real antenna beamwidth.

realAntBeamwidth = ap2beamwidth([daz del],lambda) % [Az El] (deg)

realAntBeamwidth = 2×1

 0.6006
 2.8391

We use the aperture2gain function to calculate the antenna gain.

antGain = aperture2gain(daz*del, lambda) % dBi

antGain = 43.8369

Antenna Orientation

Where should we point the antenna? The depression angle is often used to define the antenna
pointing direction.

Earth Curvature Effects

A typical assumption for many radar systems is that the earth is sufficiently flat so that the depression
angle is the same as the grazing angle as represented in the figure above.

depang_flat = (45:85)';
grazang_flat = depang_flat;
losrng = h./sind(depang_flat); % Line-of-sight range (m)

1 Featured Examples

1-262

We use the depressionang and grazingang functions to calculate the depression and grazing
angles respectively from the line-of-sight range. Using a spherical Earth model instead of the flat
Earth model, we observe that at ranges above 660 km the depression angle correction is greater than
the half beamwidth so it is critical to account for the Earth curvature in this scenario.

Rearth = physconst('earthradius');
depang_sph = depressionang(h,losrng,'Curved',Rearth);
grazang_sph = grazingang(h,losrng,'Curved',Rearth);

plot(losrng/1e3,[depang_sph-depang_flat grazang_flat-grazang_sph],'Linewidth',1.5)
grid on;
yline(realAntBeamwidth(2)/2,'--') % Half-beam width (Elevation)
xlabel('Line-of-sight Range (km)')
ylabel('Angle Correction (deg)')
legend('Depression angle','Grazing angle','Half Beamwidth (El)','Location','southeast')
title(['Correction due to Earth Curvature - Radar at ',num2str(h/1e3),' km Altitude'])

Non-line-of-sight propagation

Radar energy is refracted by the atmosphere and bends towards the Earth, allowing the radar to see
beyond the horizon. We use the effearthradius function to model the effect of tropospheric

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-263

refraction using the average radius of curvature method. Since the effective Earth radius is equal to
the actual Earth radius, we conclude that the tropospheric refraction is negligible in this scenario.
Ionospheric refraction is ignored in this study.

tgtHeight = 0; % Smooth Earth
NS = 313; % Reference atmosphere N-Units
Re = effearthradius(min(losrng),h,tgtHeight,'SurfaceRefractivity',NS); % Effective Earth radius (m)
Re/Rearth

ans = 1

For the rest of this example, we select a depression angle of 68.96 degrees which corresponds to a
grazing angle of 67 degrees and a slant range of 609.4 km.

depang = depang_sph(24)

depang = 68.9629

grazang = grazang_sph(24)

grazang = 66.9953

slantrng = losrng(24)

slantrng = 6.0937e+05

Footprint and Resolution of Real and Synthetic Aperture Antennas

Radar Footprint

Next, we calculate the antenna footprint using the aperture2swath function. The footprint is
determined by the along range swath (or distance covered in the along range direction) and the
cross-range swath (or distance covered in the cross-range direction).

[rangeswath, crngswath] = aperture2swath(slantrng,lambda,[del daz],grazang);
['Real antenna range footprint: ', num2str(round(engunits(rangeswath),1)), ' km']

ans =
'Real antenna range footprint: 32.8 km'

['Real antenna cross range footprint: ', num2str(round(engunits(crngswath),1)), ' km']

ans =
'Real antenna cross range footprint: 6.4 km'

We calculate the distance from the ground track (or nadir of the satellite) to the center of the radar
beam on the ground. Notice that while the Earth curvature has a small effect on the footprint size, it
shifts the beam center position by 9.5 km in the along range direction for a given slant range of 609.4
km.

distgrndtrack_flat = h/tand(grazang_flat(24)); % Flat Earth Model
['Distance from nadir to center of the footprint (Flat Earth Model): ', num2str(round(engunits(distgrndtrack_flat),1)), ' km']

ans =
'Distance from nadir to center of the footprint (Flat Earth Model): 228.3 km'

distgrndtrack = Re*deg2rad(depang-grazang); % Taking Earth curvature into account
['Distance from nadir to center of the footprint: ', num2str(round(engunits(distgrndtrack),1)), ' km']

1 Featured Examples

1-264

ans =
'Distance from nadir to center of the footprint: 218.8 km'

Footprint Sensitivity to Frequency and Angle Variations

We analyze the antenna footprint sensitivity to frequency variations. We observe that increasing the
operating frequency of the radar reduces the antenna footprint.

f = [freq/2 3/4*freq freq 4/3*freq]'; % Operating frequencies (Hz) within C-band
lambdav = freq2wavelen(f); % Wavelengths (m)
[rangeswathv,crngswathv] = aperture2swath(slantrng,lambdav,[del daz],grazang);
clf;
plotAntennaFootprintVsFreq(freq,f,rangeswathv,crngswathv);

Next, we fix the operating frequency back to 5.5 GHz and we analyze the antenna footprint sensitivity
to grazing angle variations. We also plot the distance from the center of radar footprint to the
satellite ground track (a.k.a. the ground range) as a function of look angles. As expected, the beam
footprint and the beam center distance to nadir decrease when the grazing angle increases.

grazv = grazang_sph(8:8:end); % Grazing angles (degrees)
depangv = depang_sph(8:8:end);

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-265

slantrngv = losrng(8:8:end); % Slant range to the ground
rangeswathv = zeros(1,numel(grazv));
crngswathv = zeros(1,numel(grazv));

distgrndtrackv = Re*deg2rad(depangv-grazv);
for i=1:numel(grazv)
 [rangeswathv(i),crngswathv(i)] = aperture2swath(slantrngv(i),lambda,[del daz],grazv(i));
end
clf;
plotAntennaFootprintVsGrazAng(grazv,distgrndtrackv,rangeswathv,crngswathv,grazang);

Real Antenna Resolution

The ground range resolution is the distance below which two point targets cannot be separated in the
final image. Use the bw2rangeres function to calculate the slant range resolution of the real antenna
which is determined by the signal bandwidth.

slantrngres = bw2rangeres(bw)

slantrngres = 0.2998

1 Featured Examples

1-266

Project the slant range resolution to the ground plane for a given grazing angle. The ground range
resolution is always worse than the slant range resolution. The difference between the two increases
as the grazing angle increases. Notice that the cross-range resolution is the same as the cross-range
footprint since no signal processing is performed to enhance the resolution. This cross-range
resolution is clearly insufficient.

rngres = slant2grndrangeres(slantrngres,grazang);
disp(['Real antenna ground range resolution: ', num2str(round(rngres,2)), ' m'])

Real antenna ground range resolution: 0.77 m

crngres = crngswath;
disp(['Real antenna cross-range resolution: ', num2str(round(engunits(crngres),1)), ' km'])

Real antenna cross-range resolution: 6.4 km

Next, we analyze the ground range resolution sensitivity to variations of the grazing angle for a few
signal bandwidths. The best range resolution is achieved with a high signal bandwidth and a low
grazing angle. For a given bandwidth, the range resolution worsens as the grazing angle increases. At
500 MHz, the range resolution varies from 42 cm at a grazing angle of 45 degrees to 1.73 m at a
grazing angle of 80 degrees.

bwv = [100e6 200e6 500e6 1e9]; % Signal bandwidths
rngresv = zeros(numel(grazang_sph),numel(bwv));
for j=1:numel(grazang_sph)
 slantrngresv = bw2rangeres(bwv);
 rngresv(j,:) = slant2grndrangeres(slantrngresv,grazang_sph(j));
end
clf;
l = semilogy(grazang_sph,rngresv);

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-267

set(l(3),'LineWidth',2)
grid on
xline(grazang,'-.',{[num2str(round(grazang,2)),' deg']}); % Selected grazing angle
xlabel('Grazing Angle (deg)')
ylabel('Ground Range Resolution (m)')
title('Real Antenna Range Resolution vs. Grazing Angles')
legend('100 MHz BW', '200 MHz BW', '500 MHz BW', '1.0 GHz BW','Location','southeast')

Ideal vs Effective Resolution of the Synthetic Antenna

The section above covered the range and cross-range resolution of a real aperture radar, the next
step is to use the sarlen and sarazres functions to calculate the synthetic aperture length and its
cross-range (or azimuth) resolution. Notice that the range resolution which is dependent on the
transmit signal bandwidth and the grazing angle remains same for a real aperture radar and a SAR.

idealSyntheticApertureLength = sarlen(slantrng,lambda,daz); % Synthetic aperture length (m)
azResolution = sarazres(lambda,slantrng,idealSyntheticApertureLength); % Cross-range (azimuth) resolution (m)
integrationTime = sarinttime(idealSyntheticApertureLength,v); % Ideal integration time (sec)

Parameters = ["Synthetic Aperture Length";"Range Resolution";"Cross Range Resolution";"Integration Time"];
IdealSAR = [round(idealSyntheticApertureLength/1e3,1);rngres;round(azResolution,1);round(integrationTime*1e3,1)];

1 Featured Examples

1-268

Units = ["km";"m";"m";"ms"];
idealSAR = table(Parameters,IdealSAR,Units)

idealSAR=4×3 table
 Parameters IdealSAR Units
 ___________________________ ________ _____

 "Synthetic Aperture Length" 6.4 "km"
 "Range Resolution" 0.76711 "m"
 "Cross Range Resolution" 2.6 "m"
 "Integration Time" 1095.9 "ms"

The best cross-range resolution we can hope for using SAR in this scenario is 2.6 m. That's a
considerable improvement compared to the 6.4 km cross-range resolution of the real antenna.
However, to achieve this performance, pulses need to be integrated for over 1.1 sec. The system
we're analyzing specifies an integration time of only 800 ms. How does this effect the effective cross-
range resolution of the radar?

effSyntheticApertureLength = sarlen(v,proctime); % Take processing time constraint into account
effAzResolution = sarazres(lambda,slantrng,effSyntheticApertureLength); % Effective azimuth resolution (m)

RealAntenna = [NaN; rngres; round(crngres); NaN];
EffectiveSAR = [round(effSyntheticApertureLength/1e3,1);rngres;round(effAzResolution,1);round(proctime*1e3,1)];

sar = table(Parameters,RealAntenna,IdealSAR,EffectiveSAR,Units)

sar=4×5 table
 Parameters RealAntenna IdealSAR EffectiveSAR Units
 ___________________________ ___________ ________ ____________ _____

 "Synthetic Aperture Length" NaN 6.4 5.6 "km"
 "Range Resolution" 0.76711 0.76711 0.76711 "m"
 "Cross Range Resolution" 6388 2.6 3 "m"
 "Integration Time" NaN 1095.9 800 "ms"

By integrating pulses for only 800 ms, the synthetic aperture length is reduced by 800 m compared to
the ideal case and the cross-range resolution is reduced by 0.4 m to 3.0 m. Because data is processed
in less than 1.11 sec, the radar can keep the target within the beam footprint for the length of the
computation.

Next, we analyze the cross range resolution sensitivity to frequency variations. The cross-range
resolution improves at higher frequencies.

azresv = sarazres(lambdav,slantrng,idealSyntheticApertureLength);
effazresv = sarazres(lambdav,slantrng,effSyntheticApertureLength);
plot([f f]/1e9,[azresv(:) effazresv(:)])
grid on
legend('Ideal SAR','Effective SAR')
xlabel('Frequency (GHz)')
ylabel('Cross-range Resolution (m)')
title('Cross Range Resolution vs. Operating Frequency')

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-269

Range and Cross-Range Ambiguities in SAR Images

Coverage (swath length) and resolution cannot be chosen independently as they both impose
constraints on the pulse repetition frequency (PRF). If the PRF is set too low, the radar will suffer
from grating lobes and Doppler (or cross-range) ambiguities. If the PRF is set too high, range
measurements will be ambiguous. The grazing angle also affects the PRF selection as it impacts the
antenna footprint as seen in a previous section.

Upper and Lower PRF Bounds

We use the sarprfbounds function to determine the minimum and maximum PRF values for various
range coverages (footprint) and cross-range resolutions given the satellite velocity and the grazing
angle.

desiredCRngRes = (0.5:0.2:5); % m
desiredRngCov = (16e3:5e3:100e3); % m
[prfminv, prfmaxv] = sarprfbounds(v,desiredCRngRes,desiredRngCov,grazang);
clf
plotPRFbounds(prfminv,desiredCRngRes,prfmaxv,desiredRngCov);

1 Featured Examples

1-270

PRF Selection to Avoid Ghost Images

The PRF is typically programmable and can be optimized for each mission. We use the sarprf
function to calculate the PRF of the radar based on the satellite velocity and the real antenna
dimension along azimuth. We specify a constant roll-off factor as a safety margin to prevent mainlobe
returns from aliasing in the PRF interval.

prf = sarprf(v,daz,'RollOff',1.5)

prf = 4.0385e+03

The selected PRF is within the PRF bounds. The movement of the SAR platform within pulse
repetition interval (PRI) is 1.73 m.

t = 1/prf;
distpri = sarlen(v,t) % Distance moved by satellite in one PRI

distpri = 1.7333

Grating Lobes Analysis

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-271

We can now model the synthetic array with phased.ula using the effective aperture length and the
element spacing that we just calculated.

sarArray = phased.ULA('NumElements',ceil(effSyntheticApertureLength/distpri)+1,'ElementSpacing',distpri);
distpri/lambda

ans = 31.7998

Notice that the element spacing is over 31.8 x wavelength so the radar has grating lobes. We recall
that the real antenna azimuth beamwidth is 0.6 degrees. We model the antenna response as a highly
directional cosine pattern with the same beamwidth.

realAnt = phased.CosineAntennaElement('FrequencyRange',[freq-bw/2 freq+bw/2],'CosinePower',26e3);
realAntBeamwidth(1)

ans = 0.6006

b = beamwidth(realAnt,freq)

b = 0.6000

We plot the pattern response of both the synthetic array and the real antenna to verify that the first
grating lobe of the array is located in the null of the real antenna pattern so the radar doesn't suffer
negative impact from the grating lobes.

clf
plotResponse(sarArray,freq,physconst('LightSpeed'),'RespCut','Az','AzimuthAngles',(-3:0.005:3));
hold on
plotResponse(realAnt,freq,'RespCut','Az','AzimuthAngles',(-3:0.005:3));
hold off
legend('Synthetic array response','Real antenna response','Location','northwest')
title('')
% Annotations
xl = xline(1.8,'-.',{'First grating lobe'});
xl.LabelVerticalAlignment = 'top';
xl.LabelHorizontalAlignment = 'left';

1 Featured Examples

1-272

SAR Image SNR and Noise Equivalent Reflectivity

The next section examines different factors used in the SAR equation to calculate the image SNR. We
first analyze the target (or surface) radar cross section (RCS) and the rain (or volume clutter) RCS.

Surface Roughness vs Frequency, Polarization and Grazing Angle

We use the landreflectivity function to calculate the reflectivity a.k.a. the normalized radar
cross section (NRCS) for a given grazing angle and operating frequency. The target RCS in the
ground image plane is calculated using the sarSurfaceRCS and taking the radar resolution into
account. In general, the brightness of a SAR image area corresponds to the roughness of the surface
so mountains will appear brighter than flatland due to their higher RCS. Roughness is measured
against wavelength so a surface may appear rough at one frequency and smooth at another. Also
notice that the RCS increases as the grazing angle increases.

fsub = [2.5e9 5.5e9 7.5e9]; % Hz
grazv = 10:5:85; % degrees
landtype = ["Mountains","Flatland"];
tgtrcsv = zeros(numel(grazv),numel(fsub),numel(landtype));
for k=1:numel(landtype) % Land types with different roughness

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-273

 for j=1:numel(fsub) % Frequencies
 for u =1:numel(grazv) % Grazing angles
 nrcsv = landreflectivity(landtype(k),grazv(u),fsub(j));
 tgtrcsv(u,j,k) = sarSurfaceRCS(nrcsv,[slantrngres effAzResolution],grazv(u));
 end
 end
end
plotTargetRCSvsGrazAng(grazv,tgtrcsv,landtype,fsub)

RCS also depends on the polarization of the radar. We use the seareflectivity function to analyze
the polarization effect on the sea surface reflectivity for different sea surface roughness (i.e. sea
states). Note that there is much more variation in the sea RCS at low grazing angles and that the RCS
for horizontally polarized signals is lower than vertically polarized signals for the same sea state for
grazing angles below 60 degrees. The figure below also shows that the difference between
polarizations decreases as the grazing angle increases from 10 to 60 degrees.

pol = ["H","V"];
seaStates = [1 3 5];
grazvpol = linspace(0.1,70,100); % Grazing angle (deg)
tgtrcsv = zeros(numel(grazvpol),numel(pol),numel(seaStates));

1 Featured Examples

1-274

for n=1:numel(seaStates) % Sea states
 for j=1:numel(pol) % Polarizations
 for u =1:numel(grazvpol) % Grazing angles
 nrcsv = seareflectivity(seaStates(n),grazvpol(u),freq,'Polarization',pol(j)); % Calculate normalized RCS
 tgtrcsv(u,j,n) = sarSurfaceRCS(nrcsv,[slantrngres effAzResolution],grazvpol(u));
 end
 end
end
plotTargetRCSvsPol(grazvpol,tgtrcsv,seaStates,pol,freq)

Rain Reflectivity and Signal-to-Clutter Ratio (SCR)

Competing echoes from undesired sources such as rain can cause degradation in SAR images. Rain
falling in the vicinity of a target scene will clutter the image of that scene. We use the
rainreflectivity function to analyze rain reflectivity under varying rain rates and polarizations.
We observe that the rain reflectivity is higher for linear polarizations than circular polarization and
that it increases with the rain rate.

rainRate = [0.25 1 2 4 8 16];
pol = ["HH","HV","RCPRCP"];
rainrefl = zeros(numel(rainRate),numel(pol));

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-275

for i=1:numel(pol)
 rainrefl(:,i) = rainreflectivity(freq,rainRate,pol(i)); % 5.5 GHz operating frequency
end
plot(rainRate,pow2db(rainrefl),'LineWidth',1.5)
grid on
xlabel('Rain rate (mm/Hr)')
ylabel('Rain Reflectivity (dB/m)')
title('Polarization Effects on Rain Reflectivity')
legend('HH Polarization','HV Polarization','Circular Polarization','Location','southeast');

Next, we use the clutterVolumeRCS and rainscr functions to calculate the rain RCS which is
defined by the radar 3D resolution cell (slant range, azimuth and elevation resolution), and the ratio
of the signal energy from a resolution cell of the target scene to the energy from the rain returns
processed into the same resolution cell of the target scene (or rain SCR). We verify that the signal-to-
clutter ratio remains above 20 dB for all rain rates and for all targets including the ones with a weak
RCS such as smooth land. Therefore, we don't expect rain to be a limiting factor for this radar in this
configuration.

elbeamw = realAntBeamwidth(2); % Radar elevation beamwidth
maxRainHeight = 4000; % m

1 Featured Examples

1-276

rhoe = rainelres(slantrng,elbeamw,grazang,maxRainHeight); % Elevation resolution
res = [slantrngres effAzResolution rhoe];
rrcs = clutterVolumeRCS(rainrefl(:,1),res); % Rain RCS for HH polarization

landType = ["Wooded Hills","Farm","Smooth"];
scr = zeros(numel(rainRate),numel(landType));
tgtrcs = zeros(numel(landType),1);
for j=1:numel(landType)
 nrcsv(j) = landreflectivity(landType(j),grazang,freq); % Calculate normalized RCS of smooth land with no vegetation
 tgtrcs(j) = sarSurfaceRCS(nrcsv(j),[slantrngres effAzResolution],grazang);
 scr(:,j) = rainscr(lambda,rrcs,tgtrcs(j),proctime)'; % Signal to rain clutter ratio
end

plotRainSCR(rainRate,rrcs,scr,landType)

SAR Equation

We estimate the signal-to-noise ratio (SNR) available at the radar receiver using the SNR form of the
radar equation. First, we model and estimate the different sources of gain and loss for the radar
system and its environment.

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-277

Processing Gains

We use the matchinggain function to calculate the range processing gain due to the noise
bandwidth reduction after the matched filter.

d = 0.1; % 10 percent duty cycle
pw = (1/prf)*d; % Effective pulse width (sec)
rnggain = matchinggain(pw,bw) % Range processing gain (dB)

rnggain = 40.9275

We use the sarazgain function to calculate the azimuth processing gain due to the coherent
integration of pulses.

azgain = sarazgain(slantrng,lambda,v,effAzResolution,prf) % Az processing gain (dB)

azgain = 35.0931

Losses and Noise Factor

We use the noisefigure function to estimate the noise figure of the cascaded receiver stages. We
assume 7 stages with the following values:

• Stage 1 LNA: Noise Figure = 1.0 dB, Gain = 15.0
• Stage 2 RF Filter: Noise Figure = 0.5 dB, Gain = -0.5
• Stage 3 Mixer: Noise Figure = 5.0 dB, Gain = -7.0
• Stage 4 IF Filter: Noise Figure = 1.0 dB, Gain = -1.0
• Stage 5 IF Preamplifier: Noise Figure = 0.6 dB, Gain = 15.0
• Stage 6 IF Stages: Noise Figure = 1.0 dB, Gain = 20.0
• Stage 7 Phase Detectors: Noise Figure = 6.0 dB, Gain = -5.0

nf = [1.0, 0.5, 5.0, 1.0, 0.6, 1.0, 6.0]; % dB
g = [15.0, -0.5, -7.0, -1.0, 15.0, 20.0, -5.0]; % dB
cnf = noisefigure(nf, g)

cnf = 1.5252

We use the radarpropfactor function to calculate the one-way radar propagation factor over
smooth land.

[hgtsd, beta0, vegType] = landroughness('Smooth');
tgtheight = hgtsd;
Re = effearthradius(slantrng,h,tgtheight);
propf = radarpropfactor(slantrng,freq,h,tgtheight,'EffectiveEarthradius',Re,'TiltAngle',grazang,'ElevationBeamwidth',elbeamw,...
 'SurfaceHeightStandardDeviation',hgtsd,'SurfaceSlope',beta0,'VegetationType',vegType)

propf = -5.3980e-05

We use the tropopl function to calculate losses due to atmospheric gaseous absorption.

atmoLoss = tropopl(slantrng,freq,tgtheight,grazang)

atmoLoss = 0.0439

We use the rainpl function to calculate losses due to rain according to the ITU model. Alternatively,
one can use the cranerainpl function to make calculations according to the Crane model instead.

1 Featured Examples

1-278

rainLoss = rainpl(slantrng,freq,rainRate(end),grazang)

rainLoss = 0.5389

We use the radareqsarsnr function to calculate the image SNR with the SAR radar equation. We
assume a 5 kW peak power. Additional losses and factors including the azimuth beam shape loss,
window loss, transmission loss and receive line loss can be specified. We estimate the beam shape
loss with the beamloss function and we use 5 dB for all other fixed losses combined. For this
analysis, we use the (weakest) "Smooth" land target. A minimum image SNR of 10 dB is usually
regarded as sufficient to provided good image quality so at 35.9 dB for this target our system has
ample margins.

Lb = beamloss;
customLoss = 5; % dB
Pt = 5e3; % Peak power (W)
sntemp = systemp(cnf); % Noise Temperature
imgsnr = radareqsarsnr(slantrng,lambda,Pt,pw,rnggain,azgain,'Gain',antGain,'RCS',tgtrcs(3),...
 'AtmosphericLoss',atmoLoss,'Loss',cnf+rainLoss,'PropagationFactor',propf,...
 'Ts',sntemp,'CustomFactor',-Lb-customLoss)

imgsnr = 35.9554

Noise Equivalent Reflectivity (NER or NEZ0)

Finally, we use the sarnoiserefl function to calculate the NER of the radar and we analyze how its
sensitivity to frequency variations. The NER is the smallest distributed clutter that can be seen in the
presence of receiver noise for a given surface reflectivity. It is a measure of the sensitivity of the
radar to spatially distributed noise. For the smooth terrain we used in this calculation, the NER is
-62.6 dB at 5.5.GHz and it is increasing with frequency.

neq = sarnoiserefl(f,freq,imgsnr,nrcsv(3));
clf;
plot(f/1e9,neq,'LineWidth',1.5)
grid on
xline(5.5,'--')
xlabel('Frequency (GHz)')
ylabel('Noise Equivalent Reflectivity (dB)')
title(['Smooth Terrain - ', num2str(round(effAzResolution,1)), ' m Resolution'])

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-279

Summary

This example demonstrated how to estimate performance parameters such as coverage, resolution
and SNR for a spaceborne SAR system. We determined the upper and lower PRF bounds to avoid
ghost images. We analyzed target and rain clutter RCS for different polarizations and grazing angles.
We then estimated processing gains and losses in the radar and its environment. Finally, we used the
SAR equation to calculate the image SNR and the noise equivalent reflectivity (NER).

References

1 Doerry, Armin Walter. “Performance Limits for Synthetic Aperture Radar.” Sandia National
Laboratories, February 1, 2006.

2 O’Donnell, Robert. “Radar Systems Engineering .” IEEE Aerospace & Electronic Systems Society,
and IEEE New Hampshire Section, 2013.

Supporting Functions

slant2grndrangeres

1 Featured Examples

1-280

function grndres = slant2grndrangeres(slres, grazang)
% slant2grndrangeres Convert slant range resolution to ground range resolution
grndres = slres./cosd(grazang);
end

plotAntennaFootprintVsFreq

function t = plotAntennaFootprintVsFreq(freq,f,rangeswathv,crngswathv)
t = tiledlayout(1,2);
nexttile
% Plot cross-range vs. range
theta_grid = linspace(0,2*pi)';
semix = 0.5*rangeswathv/1e3; % km
semiy = 0.5*crngswathv/1e3; % km
l = plot(cos(theta_grid)*semix,sin(theta_grid)*semiy);
set(l(3),'LineWidth',1.5)
ylim(xlim)
grid on
xlabel('Range Swath (km)')
ylabel('Cross-Range Swath (km)')
legend([num2str(round(f(1)/1e9,1)) ' GHz'],[num2str(round(f(2)/1e9,1)) ' GHz'], ...
 [num2str(round(f(3)/1e9,1)) ' GHz'],[num2str(round(f(4)/1e9,1)) ' GHz'])

nexttile
% Plot Swath length vs. operating frequencies
plot([f f]/1e9,[rangeswathv(:) crngswathv(:)]/1e3)
xl = xline(freq/1e9,'-.',{[num2str(freq/1e9),' GHz']},'Color',l(3).Color); % Annotation
xl.LabelVerticalAlignment = 'top';
xl.LabelHorizontalAlignment = 'left';
xl.LineWidth = 1.5;
grid on
xlabel('Frequency (GHz)')
ylabel('Swath Length (km)')
legend('Along range','Cross range')

title(t,'Real Antenna Footprint vs. Operating Frequencies')
end

plotAntennaFootprintVsGrazAng

function t = plotAntennaFootprintVsGrazAng(grazv,distgrndtrackv,rangeswathv,crngswathv,grazang)

t = tiledlayout(1,2);
nexttile
% Plot footprint and beam center distance to ground track
theta_grid = linspace(0,2*pi)';
semix = 0.5*rangeswathv/1e3; % km
semiy = 0.5*crngswathv/1e3; % km
l = plot(cos(theta_grid)*semix,1e-3*distgrndtrackv(:)'+sin(theta_grid)*semiy);
set(l(3),'LineWidth',1.5)
grid on
xlabel('Range Swath (km)')
ylabel('Ground Range (km)')

legend([num2str(round(grazv(1),2)) ' deg Grazing Angle'], ...
 [num2str(round(grazv(2),2)) ' deg Grazing Angle'], ...
 [num2str(round(grazv(3),2)) ' deg Grazing Angle'], ...
 [num2str(round(grazv(4),2)) ' deg Grazing Angle'], ...

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-281

 [num2str(round(grazv(5),2)) ' deg Grazing Angle'], ...
 'Location', "northoutside")
axis padded

nexttile
% Plot beam center distance to ground track vs. grazing angles
plot(grazv,distgrndtrackv/1e3)
xl = xline(grazang,'-.',{[num2str(round(grazang,2)),' deg']},'Color',l(3).Color); % Annotation
xl.LabelVerticalAlignment = 'top';
xl.LabelHorizontalAlignment = 'left';
xl.LineWidth = 1.5;
grid on
xlabel('Grazing Angle (deg)')
ylabel('Ground Range (km)')
subtitle('Beam Center Distance to Nadir')

title(t,'Real Antenna Footprint vs. Grazing Angles')
end

plotPRFbounds

function plotPRFbounds(prfminv,desiredCRngRes,prfmaxv,desiredRngCov)
yyaxis left
fill([prfminv(1)/1e3;prfminv(:)/1e3;prfminv(end)/1e3],[0;desiredCRngRes(:);0],[0 0.4470 0.7410])
grid on
xlabel('PRF (kHz)')
ylabel('Cross-Range resolution (m)')
yyaxis right
fill([prfmaxv(1)/1e3;prfmaxv(:)/1e3;prfmaxv(end)/1e3],[100;desiredRngCov(:)/1e3;100],[0.8500 0.3250 0.0980])
xlim([prfminv(end)/1e3 prfminv(1)/1e3])
ylabel('Range coverage (km)')
legend('Cross-Range ambiguities','Range ambiguities')
title('Upper and Lower PRF Bounds')
end

plotTargetRCSvsGrazAng

function plotTargetRCSvsGrazAng(grazv,tgtrcsv,landtype,fsub)
plot(grazv,pow2db(tgtrcsv(:,:,1)),'LineWidth',1.5)
set(gca,'ColorOrderIndex',1)
hold on
plot(grazv,pow2db(tgtrcsv(:,:,2)),'--','LineWidth',1.5)
hold off
grid on
axis padded
xlabel('Grazing Angle (degrees)')
ylabel('Target RCS (dBsm)')
title('Surface Roughness Scattering')
legend([char(landtype(1)) ' @ ' num2str(round(fsub(1)/1e9,1)) ' GHz'],...
 [char(landtype(1)) ' @ ' num2str(round(fsub(2)/1e9,1)) ' GHz'],[char(landtype(1)) ' @ ' num2str(round(fsub(3)/1e9,1)) ' GHz'],...
 [char(landtype(2)) ' @ ' num2str(round(fsub(1)/1e9,1)) ' GHz'],[char(landtype(2)) ' @ ' num2str(round(fsub(2)/1e9,1)) ' GHz'],...
 [char(landtype(2)) ' @ ' num2str(round(fsub(3)/1e9,1)) ' GHz'],'Location','northwest')
end

plotTargetRCSvsPol

function plotTargetRCSvsPol(grazvpol,tgtrcsv,seaStates,pol,freq)
plot(grazvpol,pow2db(squeeze(tgtrcsv(:,1,:))),'LineWidth',1.5)

1 Featured Examples

1-282

set(gca,'ColorOrderIndex',1)
hold on
plot(grazvpol,pow2db(squeeze(tgtrcsv(:,2,:))),'--','LineWidth',1.5)
hold off
grid on
xlabel('Grazing Angle (degrees)')
ylabel('Target RCS (dBsm)')
title(['Surface Roughness Scattering @ ' num2str(round(freq/1e9,1)) ' GHz vs. Polarization'])
legend(['Sea State ' num2str(seaStates(1)) ' - ' char(pol(1)) ' pol'],...
 ['Sea State ' num2str(seaStates(2)) ' - ' char(pol(1)) ' pol'],...
 ['Sea State ' num2str(seaStates(3)) ' - ' char(pol(1)) ' pol'],...
 ['Sea State ' num2str(seaStates(1)) ' - ' char(pol(2)) ' pol'],...
 ['Sea State ' num2str(seaStates(2)) ' - ' char(pol(2)) ' pol'],...
 ['Sea State ' num2str(seaStates(3)) ' - ' char(pol(2)) ' pol'],'Location','southeast')
end

plotRainSCR

function plotRainSCR(rainRate,rrcs,scr,landType)
t = tiledlayout(1,2);
nexttile
% Plot rain RCS vs rain rate
plot(rainRate,pow2db(rrcs),'LineWidth',1.5)
grid on
xlabel('Rain rate (mm/Hr)')
ylabel('Rain RCS (dBsm)')
legend('HH polarization')

nexttile
% Plot signal-to-clutter ratio (SCR) vs. rain rate
plot(rainRate,scr,'LineWidth',1.5)
grid on
xlabel('Rain rate (mm/Hr)')
ylabel('Signal-to-Clutter ratio (dB)')
legend(landType(1),landType(2),landType(3))
title(t, 'Rain Clutter')
end

 Spaceborne Synthetic Aperture Radar Performance Prediction

1-283

Airborne SAR System Design
This example demonstrates how to design a Synthetic Aperture Radar (SAR) sensor operating in X-
band and calculate its parameters. SAR uses the motion of the radar antenna over a target region to
provide image of the target region. Synthetic aperture is created when SAR platform travels over the
target region while the pulses are transmitted and received from the radar antenna.

This example focuses on design of a SAR sensor which can meet a set of performance parameters. It
outlines the steps to translate performance specifications, such as the azimuth resolution and the
probability of detection, into SAR system parameters, such as the antenna dimension and the
transmit power. It models design parameters for stripmap and spotlight SAR modes of operation.
Relative to the stripmap operation, spotlight mode can provide a better resolution, stronger signal
from the scene at the cost of reduced scene size or area imaging rate. The example also models the
parameters of the azimuth chirp signal.

Design Specifications

The goal of this airborne SAR system is to provide an image of the target region at a distance up to
10 km from the airborne platform with a range and azimuth resolution of 1 m. The platform is
operating at an altitude of 5 km and moving with a velocity of 100 m/s. The desired performance
indices are probability of detection (Pd) and probability of false alarm (Pfa). These indices must attain
a value of 0.9 for Pd and smaller than 1e-6 for Pfa.

slantrngres = 1; % Required slant range resolution (m)
azres = 1; % Required azimuth resolution (m)
maxrng = 10e3; % Maximum unambiguous slant range (m)
pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
v = 100; % Velocity (m/s)
h = 5000; % Radar altitude (m)

1 Featured Examples

1-284

Airborne SAR System Design

We need to define several parameters of the radar system. In this section, system parameters like
length of synthetic aperture for stripmap as well as spotlight modes, signal bandwidth which are key
parameters that define the operational capability of a SAR system have been derived apart from
parameters like beamwidth, integration time and coverage rate.

Signal Configuration

To calculate the SAR system parameters, we also need to know the wavelength of the propagating
signal, which is related to the operating frequency of the system. Here, we set the operating
frequency to 10 GHz considering X-band.

We use the freq2wavelen function to calculate the wavelength of the propagating signal.

freq = 10e9; % Radar Frequency within X-band (Hz)
lambda = freq2wavelen(freq) % Wavelength (m)

lambda = 0.0300

The signal bandwidth maps to the slant range resolution of SAR and this in turn is the deciding factor
needed to distinguish two targets separated by a distance. Slant range resolution gives you the
minimum range difference needed to distinguish two targets. Use the rangeres2bw function to
calculate the signal bandwidth which is determined by the slant range resolution.

pulse_bw = rangeres2bw(slantrngres) % Pulse bandwidth (Hz)

pulse_bw = 149896229

Stripmap SAR Mode

The stripmap SAR mode assumes a fixed pointing direction of the radar antenna relative to the
direction of motion of platform. Here, the antenna points to the broadside direction.

Antenna Orientation

The depression angle is often used to define the antenna pointing direction in elevation. This example
assumes that the earth is sufficiently flat so that the depression angle is the same as the grazing
angle.

We use the grazingang function to calculate the grazing angle from the line-of-sight range.

grazang = grazingang(h,maxrng,'Flat') % Grazing angle (in degrees)

grazang = 30.0000

Antenna Azimuth Dimension

How do we decide the antenna azimuth dimension? The required azimuth resolution is often a
deciding factor for antenna azimuth dimension.

The next step is to use the sarlen and sarazres functions to analyze and calculate the synthetic
aperture length and its azimuth resolution for selecting the antenna azimuth dimension.

dazv = [1 1.5 2 2.5 3]; % Antenna azimuth dimensions (m)
striplenv = zeros(1,numel(dazv));
stripazresv = zeros(1,numel(dazv));

 Airborne SAR System Design

1-285

for i=1:numel(dazv)
 striplenv(i) = sarlen(maxrng,lambda,dazv(i));
 stripazresv(i) = sarazres(maxrng,lambda,striplenv(i));
end

helperPlotStripmapMode(stripazresv,striplenv,dazv,azres)

As can be seen from the figure above, a synthetic aperture length of 149.9 m for the stripmap mode
corresponding to 1 m of required azimuth resolution can be a good choice. The smallest antenna
dimension in azimuth we can use for stripmap SAR in this scenario is 2 m. However, to achieve image
azimuth resolution less than 1 m the antenna dimension in azimuth must be increased for stripmap
SAR imaging mode.

For the rest of this example, we select synthetic aperture length of 149.9 m for stripmap mode and
antenna azimuth dimension of 2 m.

daz = 2

daz = 2

striplen = 149.9

striplen = 149.9000

Antenna Elevation Dimension

1 Featured Examples

1-286

What should we use for deciding the antenna elevation dimension? The required swath length to be
imaged is often used to define the antenna elevation dimension. We assume swath to be imaged along
range is 2.4 km.

The next step is to use the aperture2swath function to analyze and calculate the swath length for
selecting an antenna elevation dimension.

rngswath = 2400;
delv = [0.15 0.2 0.25 0.3 0.35]; % Elevation Dimensions (m)
rangeswathv = zeros(1,numel(delv));
for i=1:numel(delv)
 [rangeswathv(i),crngswath] = aperture2swath(maxrng,lambda,[delv(i) daz],grazang);
end
clf
plot(rangeswathv,delv)
grid on
xline(rngswath,'-.',{[num2str(round(rngswath,2)),' m']}); % Selected range swath
xlabel('Swath Length (m)')
ylabel('Antenna Elevation Dimension (m)')

As can be seen from the figure above, we choose the antenna elevation dimension of 0.25 m for the
stripmap mode corresponding to 2400 m of required swath length along range to be imaged.

For the rest of this example, we select antenna elevation dimension of 0.25 m.

del = 0.25

del = 0.2500

 Airborne SAR System Design

1-287

Real Antenna Beamwidth and Gain

We use the ap2beamwidth function to calculate the real antenna beamwidth.

realAntBeamwidth = ap2beamwidth([daz del],lambda) % [Az El] (deg)

realAntBeamwidth = 2×1

 0.8588
 6.8707

We use the aperture2gain function to calculate the antenna gain.

antGain = aperture2gain(daz*del, lambda) % dBi

antGain = 38.4454

Synthetic Beamwidth, Processing Time, and Constraints

The section above covered the calculation of antenna dimension, signal bandwidth, and antenna
beamwidth of a real aperture radar. The required design parameters mentioned above impose
constraints on swath length and area coverage rate.

The next step is to use the sarbeamwidth, sarinttime, sarmaxcovrate and sarmaxswath
functions to calculate the synthetic beamwidth, integration time, area coverage rate and maximum
swath length. Notice that the azimuth beamwidth for SAR system is much smaller than the azimuth
beamwidth for a real aperture radar.

stripsynbw = sarbeamwidth(lambda,striplen); % Synthetic beamwidth (degrees)
stripinttime = sarinttime(v,striplen); % Integration time (sec)
stripcovrate = sarmaxcovrate(azres,grazang); % Upper bound on coverage rate (m^2/sec)
stripswlen = sarmaxswath(v,azres,grazang); % Upper bound on swath length (m)

RealAntenna = [realAntBeamwidth(1); NaN; NaN; NaN];
Parameters = ["Synthetic Beamwidth";"Integration Time";"Upper Bound on Swath Length";...
 "Upper Bound on Area Coverage Rate"];
StripmapSAR = [stripsynbw;stripinttime;round(stripcovrate/1e6,1);round(stripswlen/1e3)];
Units = ["degrees";"sec";"km^2/sec";"km"];
sarparams = table(Parameters,RealAntenna,StripmapSAR,Units)

sarparams=4×4 table
 Parameters RealAntenna StripmapSAR Units
 ___________________________________ ___________ ___________ __________

 "Synthetic Beamwidth" 0.85884 0.0057294 "degrees"
 "Integration Time" NaN 1.499 "sec"
 "Upper Bound on Swath Length" NaN 173.1 "km^2/sec"
 "Upper Bound on Area Coverage Rate" NaN 1731 "km"

The azimuth resolution we can achieve using SAR in this scenario is 1 m. However, to achieve this
performance, pulses need to be integrated for over 1.5 sec. The upper bound on area coverage rate is
173 km^2/sec. The upper bound on maximum swath length to be imaged is 1731 km.

Spotlight SAR Mode

Spotlight SAR is capable of extending the SAR imaging capability to high resolution imaging
significantly. This is possible since the spotlight mode ensures that the radar antenna squints

1 Featured Examples

1-288

instantaneously around the region being imaged thereby illuminating the target region for longer
duration as compared to stripmap mode.

Coherent Integration Angle

Achieved azimuth resolution in stripmap SAR is 1 m. Resolution of spotlight SAR is often expressed in
terms of coherent integration angle of the radar boresight vector as the platform traverses the
synthetic aperture length.

We use the sarintang and sarlen functions to calculate the coherent integration angle and
synthetic aperture length.

ciang = sarintang(lambda,azres) % (degrees)

ciang = 0.8589

len = sarlen(maxrng,'CoherentIntegrationAngle',ciang) % (m)

len = 149.8976

The best azimuth resolution achievable in stripmap SAR is 1 m for antenna dimension of 2 m in
azimuth. However, a specification to obtain 0.5 m resolution for spotlight SAR can be achieved using
same antenna. This is obtained by steering the radar beam to keep the target within the beam for a
longer time and thus form a longer synthetic aperture.

The next step is to use the sarlen and sarazres functions to analyze the synthetic aperture length
and its azimuth resolution over varying coherent integration angles.

spotazres = 0.5; % Azimuth resolution in spotlight SAR (m)
intangv = 1:0.01:2.5; % Coherent integration angles (degrees)
spotlenv = zeros(1,numel(intangv));
spotazresv = zeros(1,numel(intangv));
for i=1:numel(intangv)
 spotlenv(i) = sarlen(maxrng,'CoherentIntegrationAngle',intangv(i));
 spotazresv(i) = sarazres(maxrng,lambda,spotlenv(i));
end

helperPlotSpotlightMode(spotazresv,spotlenv,intangv,spotazres)

 Airborne SAR System Design

1-289

As evident from the figure above, we choose the synthetic aperture length of 300 m for the spotlight
mode corresponding to 0.5 m of azimuth resolution. For a coherent integration angle of 1.71 degrees,
the azimuth resolution in spotlight mode is 0.5 m. However, to achieve similar azimuth resolution in
stripmap mode, the antenna dimension in azimuth must be increased.

For the rest of this example, we select synthetic aperture length of 300 m and coherent integration
angle of 1.71 degrees for spotlight mode.

spotlen = 300

spotlen = 300

intang = 1.71

intang = 1.7100

Synthetic Beamwidth, Processing Time, and Constraint

Relative to the stripmap operation, spotlight mode can provide a better resolution, stronger signal
from the scene at the cost of reduced scene size or area imaging rate.

We use sarbeamwidth, sarinttime, sarmaxcovrate and sarmaxswath functions to calculate
the synthetic beamwidth, integration time, area coverage rate and maximum swath length. Notice
that the area coverage rate, maximum swath length for spotlight SAR system is much smaller than for
a stripmap SAR.

spotsynbw = sarbeamwidth(lambda,spotlen); % Synthetic beamwidth (degrees)
spotinttime = sarinttime(v,spotlen); % Integration time (sec)

1 Featured Examples

1-290

spotcovrate = sarmaxcovrate(spotazres,grazang); % Upper bound on coverage rate (m^2/sec)
spotswlen = sarmaxswath(v,spotazres,grazang); % Upper bound on swath length (m)

SpotlightSAR = [spotsynbw;spotinttime;round(spotcovrate/1e6,1);round(spotswlen/1e3)];

sar = table(Parameters,StripmapSAR,SpotlightSAR,Units)

sar=4×4 table
 Parameters StripmapSAR SpotlightSAR Units
 ___________________________________ ___________ ____________ __________

 "Synthetic Beamwidth" 0.0057294 0.0028628 "degrees"
 "Integration Time" 1.499 3 "sec"
 "Upper Bound on Swath Length" 173.1 86.5 "km^2/sec"
 "Upper Bound on Area Coverage Rate" 1731 865 "km"

Azimuth Chirp Signal Parameters

In this section, azimuth chirp signal parameters like azimuth chirp rate, Doppler bandwidth, beam
compression ratio, azimuth bandwidth after dechirp and azimuth time-bandwidth product have been
derived. These are important parameters to design an accurate synthetic aperture processing
mechanism in azimuth.

We use the sarchirprate function to calculate azimuth chirp rate at which the azimuth signal
changes frequency as the sensor illuminates a scatterer.

azchirp = sarchirprate(maxrng,lambda,v); % (Hz/sec)

We analyze the azimuth chirp rate sensitivity to range and Doppler cone angle variations. We observe
that increasing the unambiguous range of the radar reduces the azimuth chirp rate.

dcang = 60:1:120; % Doppler cone angles (in degrees)
rngv = 1e3:100:maxrng;
azchirpv = zeros(length(dcang),length(rngv));
for i = 1:length(dcang)
 azchirpv(i,:) = sarchirprate(rngv,lambda,v,dcang(i));
end
clf
mesh(rngv/1e3,dcang,azchirpv)
xlabel('Range (km)')
ylabel('Doppler Cone Angle (degrees)')
zlabel('Azimuth Chirp Rate (Hz/sec)')
view([45 45]);

 Airborne SAR System Design

1-291

We use the sarscenedopbw function to calculate the scene bandwidth after azimuth dechirp. We
assume scene size of 916 m.

Wa = 916;
bwdechirp = sarscenedopbw(maxrng,lambda,v,Wa); % (Hz)

We analyze the scene bandwidth sensitivity to Doppler cone angle variations.

bwdechirpv = zeros(length(dcang),1);
for i = 1:length(dcang)
 bwdechirpv(i,:) = sarscenedopbw(maxrng,lambda,v,Wa,dcang(i));
end
clf
plot(dcang,bwdechirpv)
grid on
xlabel('Doppler Cone Angle (degrees)')
ylabel('Azimuth Bandwidth after Dechirp (Hz)')

1 Featured Examples

1-292

Next, we use the sarpointdopbw and sarbeamcompratio functions to calculate the Doppler
bandwidth of the received signal from a point scatterer and the beam compression ratio. Notice that
the Doppler bandwidth, beam compression ratio for spotlight SAR system is much greater than for a
stripmap SAR.

Stripmap SAR

stripbwchirp = sarpointdopbw(v,azres); % (Hz)
striptbwaz = bwdechirp*stripinttime; % Unitless
stripbcr = sarbeamcompratio(maxrng,lambda,striplen,Wa); % Unitless

Spotlight SAR Mode

spotbwchirp = sarpointdopbw(v,spotazres); % (Hz)
spottbwaz = bwdechirp*spotinttime; % Unitless
spotbcr = sarbeamcompratio(maxrng,lambda,spotlen,Wa); % Unitless

Parameters = ["Doppler Bandwidth from Point Scatterer";"Azimuth Time-Bandwidth Product";...
 "Beam Compression Ratio";"Azimuth Chirp Rate";"Azimuth Bandwidth after Dechirp"];
StripmapSAR = [stripbwchirp;striptbwaz;stripbcr;round(azchirp);bwdechirp];
SpotlightSAR = [spotbwchirp;round(spottbwaz);round(spotbcr);round(azchirp);bwdechirp];
Units = ["Hz";"unitless";"unitless";"Hz/sec";"Hz"];
r = table(Parameters,StripmapSAR,SpotlightSAR,Units)

r=5×4 table
 Parameters StripmapSAR SpotlightSAR Units
 __ ___________ ____________ __________

 Airborne SAR System Design

1-293

 "Doppler Bandwidth from Point Scatterer" 100 200 "Hz"
 "Azimuth Time-Bandwidth Product" 916.02 1833 "unitless"
 "Beam Compression Ratio" 916.02 1833 "unitless"
 "Azimuth Chirp Rate" 67 67 "Hz/sec"
 "Azimuth Bandwidth after Dechirp" 611.09 611.09 "Hz"

SAR Power Calculation

The next section estimates the peak power that must be transmitted using the power form of the
radar equation for stripmap SAR. The required peak power is related to many factors including the
maximum unambiguous range, the required SNR at the receiver, and the pulse width of the
waveform. Among these factors, the required SNR at the receiver is determined by the design goal of
Pd and Pfa. We model and estimate the target RCS, the PRF and different sources of gain and loss for
the radar system and its environment. We first calculate the SNR required at the receiver.

Receiver SNR

The relation between Pd, Pfa and SNR can be best represented by a receiver operating
characteristics (ROC) curve.

snr_db = [-inf, 0, 3, 10, 13];
rocsnr(snr_db);

The ROC curves make it clear that to satisfy the design goals of Pfa = 1e-6 and Pd = 0.9, the received
signal's SNR must exceed 13 dB. The approach above reads out the SNR value from the curve, but it

1 Featured Examples

1-294

is often desirable to calculate only the required value. Using Albersheim's equation, the required SNR
can be derived as

snr_min = albersheim(pd, pfa)

snr_min = 13.1145

Target RCS

We use the landreflectivity function to calculate the reflectivity a.k.a. the normalized radar
cross-section (NRCS) for a given grazing angle and operating frequency. The target RCS in the
ground image plane is calculated using the sarSurfaceRCS and taking the radar resolution into
account.

landType = "Smooth";
nrcs = landreflectivity(landType,grazang,freq); % Calculate normalized RCS of smooth land with no vegetation
tgtrcs = sarSurfaceRCS(nrcs,[slantrngres azres],grazang);

Upper and Lower PRF Bounds

We use the sarprfbounds function to determine the minimum and maximum PRF values for a range
swath and azimuth resolution given the radar velocity and the grazing angle.

[prfminv, prfmax] = sarprfbounds(v,azres,rngswath,grazang)

prfminv = 100

prfmax = 6.7268e+04

PRF Selection

The PRF is typically programmable and can be optimized for each mission. We use the sarprf
function to calculate the PRF of the radar based on the radar velocity and the real antenna dimension
along azimuth. We specify a constant roll-off factor as a safety margin to prevent mainlobe returns
from aliasing in the PRF interval. If the PRF is set too low, the radar will suffer from grating lobes and
Doppler ambiguities. If the PRF is set too high, range measurements will be ambiguous.

prf = sarprf(v,daz,'RollOff',1.5)

prf = 150

The selected PRF is within the PRF bounds.

Processing Gains

We use the matchinggain function to calculate the range processing gain due to the noise
bandwidth reduction after the matched filter.

d = 0.05; % 5 percent duty cycle
pw = (1/prf)*d; % Effective pulse width (sec)
rnggain = matchinggain(pw,pulse_bw) % Range processing gain (dB)

rnggain = 46.9867

We use the sarazgain function to calculate the azimuth processing gain due to the coherent
integration of pulses.

azgain = sarazgain(maxrng,lambda,v,azres,prf); % Az processing gain (dB)

 Airborne SAR System Design

1-295

Losses and Noise Factor

We use the noisefigure function to estimate the noise figure of the cascaded receiver stages. We
assume 7 stages with the following values:

• Stage 1 LNA: Noise Figure = 1.0 dB, Gain = 15.0
• Stage 2 RF Filter: Noise Figure = 0.5 dB, Gain = -0.5
• Stage 3 Mixer: Noise Figure = 5.0 dB, Gain = -7.0
• Stage 4 IF Filter: Noise Figure = 1.0 dB, Gain = -1.0
• Stage 5 IF Preamplifier: Noise Figure = 0.6 dB, Gain = 15.0
• Stage 6 IF Stages: Noise Figure = 1.0 dB, Gain = 20.0
• Stage 7 Phase Detectors: Noise Figure = 6.0 dB, Gain = -5.0

nf = [1.0, 0.5, 5.0, 1.0, 0.6, 1.0, 6.0]; % dB
g = [15.0, -0.5, -7.0, -1.0, 15.0, 20.0, -5.0]; % dB
cnf = noisefigure(nf, g)

cnf = 1.5252

We use the radarpropfactor function to calculate the one-way radar propagation factor over
smooth land.

[hgtsd, beta0, vegType] = landroughness('Smooth');
tgtheight = hgtsd;
Re = effearthradius(maxrng,h,tgtheight);
propf = radarpropfactor(maxrng,freq,h,tgtheight,'EffectiveEarthradius',Re,'TiltAngle',grazang,...
 'ElevationBeamwidth',realAntBeamwidth(2),'SurfaceHeightStandardDeviation',hgtsd,'SurfaceSlope',beta0,...
 'VegetationType',vegType)

propf = -0.0042

We use the tropopl function to calculate losses due to atmospheric gaseous absorption.

atmoLoss = tropopl(maxrng,freq,tgtheight,grazang)

atmoLoss = 0.0733

Transmit Power

We use the radareqsarpow function to calculate the peak power with the SAR radar equation.
Additional losses and factors including the azimuth beam shape loss, window loss, transmission loss
and receive line loss can be specified. We estimate the beam shape loss with the beamloss function,
and we use 5 dB for all other fixed losses combined. For this analysis, we use the (weakest) "Smooth"
land target. A finite data collection time limits the total energy collected, and signal processing in the
radar increases the SNR in the SAR image by two major gain factors. The first is due to pulse
compression, and the second is due to coherently combining echoes from multiple pulses.

imgsnr = snr_min + rnggain + azgain; % (dB)
Lb = beamloss;
customLoss = 5; % dB
sntemp = systemp(cnf); % Noise Temperature
Pt = radareqsarpow(maxrng,lambda,imgsnr,pw,rnggain,azgain,'Gain',antGain,'RCS',tgtrcs,...
 'AtmosphericLoss',atmoLoss,'Loss',cnf,'PropagationFactor',propf,...
 'Ts',sntemp,'CustomFactor',-Lb-customLoss)

Pt = 535.1030

1 Featured Examples

1-296

Summary

This example demonstrates the aspects that must be calculated to design a X-band SAR system that
can operate in stripmap and spotlight mode. The example demonstrates that the same SAR system
can operate in stripmap as well as spotlight modes and achieve varying levels of resolution depending
upon the requirements at the cost of other parameters. We analyzed and selected antenna dimensions
to meet required resolutions. We estimated antenna gains, processing time, constraints, and the
azimuth chirp signal parameters. We then estimated required SNR, target RCS, PRF, processing gains
and losses in the radar and its environment. Finally, we used the SAR equation to calculate the peak
transmit power.

Parameters = ["Antenna Dimension in Azimuth";"Antenna Dimension in Elevation";"Synthetic Aperture Length";...
 "Azimuth Resolution";"Synthetic Beamwidth";"Integration Time";"Upper Bound on Swath Length";...
 "Upper Bound on Area Coverage Rate";"Coherent Integration Angle";"Doppler Bandwidth from Point Scatterer";...
 "Azimuth Time-Bandwidth Product";"Beam Compression Ratio";"Azimuth Chirp Rate";"Azimuth Bandwidth after Dechirp"];
Stripmap = [daz;del;striplen;azres;stripsynbw;stripinttime;round(stripcovrate/1e6,1);round(stripswlen/1e3);...
 NaN;stripbwchirp;striptbwaz;stripbcr;round(azchirp);bwdechirp];
Spotlight = [daz;del;spotlen;spotazres;spotsynbw;spotinttime;round(spotcovrate/1e6,1);round(spotswlen/1e3);...
 intang;spotbwchirp;round(spottbwaz);round(spotbcr);round(azchirp);bwdechirp];
Units = ["m";"m";"m";"m";"degrees";"sec";"km^2/sec";"km";"degrees";"Hz";"unitless";...
 "unitless";"Hz/sec";"Hz"];
T = table(Parameters,Stripmap,Spotlight,Units)

T=14×4 table
 Parameters Stripmap Spotlight Units
 __ _________ _________ __________

 "Antenna Dimension in Azimuth" 2 2 "m"
 "Antenna Dimension in Elevation" 0.25 0.25 "m"
 "Synthetic Aperture Length" 149.9 300 "m"
 "Azimuth Resolution" 1 0.5 "m"
 "Synthetic Beamwidth" 0.0057294 0.0028628 "degrees"
 "Integration Time" 1.499 3 "sec"
 "Upper Bound on Swath Length" 173.1 86.5 "km^2/sec"
 "Upper Bound on Area Coverage Rate" 1731 865 "km"
 "Coherent Integration Angle" NaN 1.71 "degrees"
 "Doppler Bandwidth from Point Scatterer" 100 200 "Hz"
 "Azimuth Time-Bandwidth Product" 916.02 1833 "unitless"
 "Beam Compression Ratio" 916.02 1833 "unitless"
 "Azimuth Chirp Rate" 67 67 "Hz/sec"
 "Azimuth Bandwidth after Dechirp" 611.09 611.09 "Hz"

References

[1] Carrara, Walter G., Ronald M. Majewski, and Ron S. Goodman. Spotlight Synthetic Aperture
Radar: Signal Processing Algorithms. Boston: Artech House, 1995.

Supporting Functions

helperPlotStripmapMode

function helperPlotStripmapMode(stripazresv,striplenv,dazv,azres)
% Plot azimuth resolution vs. synthetic aperture length
subplot(1,2,1)
plot(stripazresv,striplenv)
grid on

 Airborne SAR System Design

1-297

xline(azres,'-.',{[num2str(round(azres)),' m']}); % Selected azimuth resolution
xlabel('Azimuth or Cross-range Resolution (m)')
ylabel('Synthetic Length (m)')

stripidx = find(abs(striplenv-150)<1); % Index corresponding to required azimuth resolution

% Plot synthetic aperture length vs. antenna azimuth dimensions
subplot(1,2,2)
plot(striplenv,dazv)
grid on
xline(striplenv(stripidx),'-.',{[num2str(round(striplenv(stripidx),2)),' m']}); % Selected synthetic length
xlabel('Synthetic Length (m)')
ylabel('Antenna Azimuth Dimension (m)')
end

helperPlotSpotlightMode

function helperPlotSpotlightMode(spotazresv,spotlenv,intangv,spotazres)
% Plot azimuth resolution vs. synthetic aperture length
subplot(1,2,1)
plot(spotazresv,spotlenv)
grid on
xline(0.5,'-.',{[num2str(round(spotazres,2)),' m']}); % Selected azimuth resolution
xlabel('Azimuth or Cross-range Resolution (m)')
ylabel('Synthetic Length (m)')

spotidx = find(abs(spotlenv-300)<1); % Index corresponding to 0.5 m azimuth resolution

% Plot synthetic aperture length vs. coherent integration angles
subplot(1,2,2)
plot(spotlenv,intangv)
grid on
xline(spotlenv(spotidx),'-.',{[num2str(round(spotlenv(spotidx))),' m']}); % Selected synthetic length
xlabel('Synthetic Length (m)')
ylabel('Coherent Integration Angle (degrees)')
end

1 Featured Examples

1-298

Stripmap Synthetic Aperture Radar (SAR) Image Formation
This example shows how to model a stripmap-based Synthetic Aperture Radar (SAR) system using a
Linear FM (LFM) Waveform. SAR is a type of side-looking airborne radar where the achievable cross-
range resolution is much higher as compared to a real aperture radar. The image generated using
SAR has its own advantages primarily pertaining to the use of an active sensor (radar) as opposed to
conventional imaging systems employing a passive sensor (camera) that rely on the ambient lighting
to obtain the image. Since an active sensor is used, the system provides all-weather performance
irrespective of snow, fog, or rain, for example. Also, configuring the system to work at different
frequencies such as L-, S-, or C-band can help analyze different layers on the ground based on
varying depth of penetrations. Because the resolution of SAR depends upon the signal and antenna
configuration, resolution can be much higher than for vision-based imaging systems. Using stripmap
mode, this example performs both a range migration algorithm [1] and an approximate form of a
back-projection algorithm [2] to image stationary targets. The approximate form of the back-
projection algorithm has been chosen for the reduced computational complexity as indicated in [3]. A
Linear FM waveform offers the advantage of large time-bandwidth product at a considerably lower
transmit power making it suitable for use in airborne systems.

Synthetic Aperture Radar Imaging

SAR generates a two-dimensional (2-D) image. The direction of flight is referred to as the cross-range
or azimuth direction. The direction of the antenna boresight (broadside) is orthogonal to the flight
path and is referred to as the cross-track or range direction. These two directions provide the basis
for the dimensions required to generate an image obtained from the area within the antenna beam-
width through the duration of the data collection window. The cross-track direction is the direction in
which pulses are transmitted. This direction provides the slant range to the targets along the flight
path. The energy received after reflection off the targets for each pulse must then be processed (for
range measurement and resolution). The cross-range or azimuth direction is the direction of the flight
path and it is meaningful to process the ensemble of the pulses received over the entire flight path in
this direction to achieve the required measurement and resolution. Correct focusing in both the
directions implies a successful generation of image in the range and cross-range directions. It is a
requirement for the antenna beam-width to be wide enough so that the target is illuminated for a
long duration by the beam as the platform moves along its trajectory. This will help provide more
phase information. The key terms frequently encountered when working with SAR are:

1 Cross-range (azimuth): this parameter defines the range along the flight path of the radar
platform.

2 Range: this parameter defines the range orthogonal to the flight path of the radar platform.
3 Fast-time: this parameter defines the time duration for operation of each pulse.
4 Slow-time: this parameter defines the cross-range time information. The slow time typically

defines the time instances at which the pulses are transmitted along the flight path.

 Stripmap Synthetic Aperture Radar (SAR) Image Formation

1-299

Radar Configuration

Consider a SAR radar operating in C-band with a 4 GHz carrier frequency and a signal bandwidth of
50 MHz. This bandwidth yields a range resolution of 3 meters. The radar system collects data
orthogonal to the direction of motion of the platform as shown in the figure above. The received
signal is a delayed replica of the transmitted signal. The delay corresponds in general to the slant
range between the target and the platform. For a SAR system, the slant range will vary over time as
the platform traverses a path orthogonal to the direction of antenna beam. This section below focuses
on defining the parameters for the transmission waveform. The LFM sweep bandwidth can be
decided based on the desired range resolution.

Set the physical constant for speed of light.

c = physconst('LightSpeed');

Set the SAR center frequency.

fc = 4e9;

Set the desired range and cross-range resolution to 3 meters.

rangeResolution = 3;
crossRangeResolution = 3;

The signal bandwidth is a parameter derived from the desired range resolution.

bw = c/(2*rangeResolution);

In a SAR system the PRF has dual implications. The PRF not only determines the maximum
unambiguous range but also serves as the sampling frequency in the cross-range direction. If the PRF

1 Featured Examples

1-300

is too low to achieve a higher unambiguous range, there is a longer duration pulses resulting in fewer
pulses in a particular region. At the same time, if the PRF is too high, the cross-range sampling is
achieved but at the cost of reduced range. Therefore, the PRF should be less than twice the Doppler
frequency and should also satisfy the criteria for maximum unambiguous range

prf = 1000;
aperture = 4;
tpd = 3*10^-6;
fs = 120*10^6;

Configure the LFM signal of the radar.

waveform = phased.LinearFMWaveform('SampleRate',fs, 'PulseWidth', tpd, 'PRF', prf,...
 'SweepBandwidth', bw);

Assume the speed of aircraft is 100 m/s with a flight duration of 4 seconds.

speed = 100;
flightDuration = 4;
radarPlatform = phased.Platform('InitialPosition', [0;-200;500], 'Velocity', [0; speed; 0]);
slowTime = 1/prf;
numpulses = flightDuration/slowTime +1;

maxRange = 2500;
truncrangesamples = ceil((2*maxRange/c)*fs);
fastTime = (0:1/fs:(truncrangesamples-1)/fs);
% Set the reference range for the cross-range processing.
Rc = 1000;

Configure the SAR transmitter and receiver. The antenna looks in the broadside direction orthogonal
to the flight direction.

antenna = phased.CosineAntennaElement('FrequencyRange', [1e9 6e9]);
antennaGain = aperture2gain(aperture,c/fc);

transmitter = phased.Transmitter('PeakPower', 50e3, 'Gain', antennaGain);
radiator = phased.Radiator('Sensor', antenna,'OperatingFrequency', fc, 'PropagationSpeed', c);

collector = phased.Collector('Sensor', antenna, 'PropagationSpeed', c,'OperatingFrequency', fc);
receiver = phased.ReceiverPreamp('SampleRate', fs, 'NoiseFigure', 30);

Configure the propagation channel.

channel = phased.FreeSpace('PropagationSpeed', c, 'OperatingFrequency', fc,'SampleRate', fs,...
 'TwoWayPropagation', true);

Scene Configuration

In this example, three static point targets are configured at locations specified below. All targets have
a mean RCS value of 1 meter-squared.

targetpos= [800,0,0;1000,0,0; 1300,0,0]';

targetvel = [0,0,0;0,0,0; 0,0,0]';

target = phased.RadarTarget('OperatingFrequency', fc, 'MeanRCS', [1,1,1]);
pointTargets = phased.Platform('InitialPosition', targetpos,'Velocity',targetvel);
% The figure below describes the ground truth based on the target

 Stripmap Synthetic Aperture Radar (SAR) Image Formation

1-301

% locations.
figure(1);h = axes;plot(targetpos(2,1),targetpos(1,1),'*g');hold all;plot(targetpos(2,2),targetpos(1,2),'*r');hold all;plot(targetpos(2,3),targetpos(1,3),'*b');hold off;
set(h,'Ydir','reverse');xlim([-10 10]);ylim([700 1500]);
title('Ground Truth');ylabel('Range');xlabel('Cross-Range');

SAR Signal Simulation

The following section describes how the system operates based on the above configuration.
Specifically, the section below shows how the data collection is performed for a SAR platform. As the
platform moves in the cross-range direction, pulses are transmitted and received in directions
orthogonal to the flight path. A collection of pulses gives the phase history of the targets lying in the
illumination region as the platform moves. The longer the target lies in the illumination region, the
better the cross-range resolution for the entire image because the process of range and cross-range
focusing is generalized for the entire scene.

% Define the broadside angle
refangle = zeros(1,size(targetpos,2));
rxsig = zeros(truncrangesamples,numpulses);
for ii = 1:numpulses
 % Update radar platform and target position
 [radarpos, radarvel] = radarPlatform(slowTime);
 [targetpos,targetvel] = pointTargets(slowTime);

 % Get the range and angle to the point targets
 [targetRange, targetAngle] = rangeangle(targetpos, radarpos);

 % Generate the LFM pulse

1 Featured Examples

1-302

 sig = waveform();
 % Use only the pulse length that will cover the targets.
 sig = sig(1:truncrangesamples);

 % Transmit the pulse
 sig = transmitter(sig);

 % Define no tilting of beam in azimuth direction
 targetAngle(1,:) = refangle;

 % Radiate the pulse towards the targets
 sig = radiator(sig, targetAngle);

 % Propagate the pulse to the point targets in free space
 sig = channel(sig, radarpos, targetpos, radarvel, targetvel);

 % Reflect the pulse off the targets
 sig = target(sig);

 % Collect the reflected pulses at the antenna
 sig = collector(sig, targetAngle);

 % Receive the signal
 rxsig(:,ii) = receiver(sig);

end

Visualize the received signal.

The received signal can now be visualized as a collection of multiple pulses transmitted in the cross-
range direction. The plots show the real part of the signal for the three targets. The range and cross-
range chirps can be seen clearly. The target responses can be seen as overlapping as the pulse-width
is kept longer to maintain average power.

imagesc(real(rxsig));title('SAR Raw Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

 Stripmap Synthetic Aperture Radar (SAR) Image Formation

1-303

Perform range compression.

Each row of the received signal, which contains all the information from each pulse, can be matched
filtered to get the de-chirped/range compressed signal.

pulseCompression = phased.RangeResponse('RangeMethod', 'Matched filter', 'PropagationSpeed', c, 'SampleRate', fs);
matchingCoeff = getMatchedFilter(waveform);
[cdata, rnggrid] = pulseCompression(rxsig, matchingCoeff);

The figure below shows the response after matched filtering has been performed on the received
signal. The phase histories of the three targets are clearly visible along the cross-range direction and
range focusing has been achieved.

imagesc(real(cdata));title('SAR Range Compressed Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

1 Featured Examples

1-304

Azimuth Compression

There are multiple techniques to process the cross-range data and get the final image from the SAR
raw data once range compression has been achieved. In essence, the range compression helps
achieve resolution in the fast-time or range direction and the resolution in the cross-range direction is
achieved by azimuth or cross-range compression. Two such techniques are the range migration
algorithm and the back-projection algorithm which have been demonstrated in this example.

rma_processed = helperRangeMigration(cdata,fastTime,fc,fs,prf,speed,numpulses,c,Rc);
bpa_processed = helperBackProjection(cdata,rnggrid,fastTime,fc,fs,prf,speed,crossRangeResolution,c);

Visualize the final SAR image.

Plot the focused SAR image using the range migration algorithm and the approximate back projection
algorithm. Only a section of the image formed via the range migration algorithm is shown to
accurately point the location of the targets.

The range migration and accurate form of the backprojection algorithm as shown by [2] and [3]
provides theoretical resolution in the cross-track as well as along-track direction. Since the back-
projection used here is of the approximate form, the spread in azimuth direction is evident in case of
the back-projection whereas the data processed via range migration algorithm shows that theoretical
resolution is achieved.

figure(1);
imagesc((abs((rma_processed(1700:2300,600:1400).'))));
title('SAR Data focused using Range Migration algorithm ')

 Stripmap Synthetic Aperture Radar (SAR) Image Formation

1-305

xlabel('Cross-Range Samples')
ylabel('Range Samples')

figure(2)
imagesc((abs(bpa_processed(600:1400,1700:2300))));
title('SAR Data focused using Back-Projection algorithm ')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

1 Featured Examples

1-306

Summary

This example shows how to develop SAR processing leveraging a LFM signal in an airborne data
collection scenario. The example also shows how to generate an image from the received signal via
range migration and approximate form of the back-projection algorithms.

References
1 Cafforio, C., Prati, C. and Rocca, F., 1991. SAR data focusing using seismic migration techniques.

IEEE transactions on aerospace and electronic systems, 27(2), pp.194-207.
2 Cumming, I., Bennett, J., 1979. Digital Processing of Seasat SAR data. IEEE International

Conference on Acoustics, Speech, and Signal Processing.
3 Na Y., Lu Y., Sun H.,A Comparison of Back-Projection and Range Migration Algorithms for Ultra-

Wideband SAR Imaging, Fourth IEEE Workshop on Sensor Array and Multichannel Processing,
2006., Waltham, MA, 2006, pp. 320-324.

4 Yegulalp, A.F., 1999. Fast backprojection algorithm for synthetic aperture radar. Proceedings of
the 1999 IEEE Radar Conference.

Appendix

Range Migration Algorithm

function azcompresseddata = helperRangeMigration(sigData,fastTime,fc,fs,prf,speed,numPulses,c,Rc)

This function demonstrates the range migration algorithm for imaging the side looking synthetic
aperture radar.The pulsed compressed synthetic aperture data is considered in this algorithm.

 Stripmap Synthetic Aperture Radar (SAR) Image Formation

1-307

Set the range frequency span.

frequencyRange = linspace(fc-fs/2,fc+fs/2,length(fastTime));
krange = 2*(2*pi*frequencyRange)/c;

Set the cross-range wavenumber.

kaz = 2*pi*linspace(-prf/2,prf/2,numPulses)./speed;

Generate a matrix of the cross-range wavenumbers to match the size of the received two-dimensional
SAR signal

kazimuth = kaz.';
kx = krange.^2-kazimuth.^2;

Set the final wavenumber to achieve azimuth focusing.

kx = sqrt(kx.*(kx > 0));
kFinal = exp(1i*kx.*Rc);

Perform a two-dimensional FFT on the range compressed signal.

sdata =fftshift(fft(fftshift(fft(sigData,[],1),1),[],2),2);

Perform bulk compression to get the azimuth compression at the reference range. Perform filtering of
the 2-D FFT signal with the new cross-range wavenumber to achieve complete focusing at the
reference range and as a by-product, partial focusing of targets not lying at the reference range.

fsmPol = (sdata.').*kFinal;

Perform Stolt Interpolation to achieve focusing for targets that are not lying at the reference range

stoltPol = fsmPol;
for i = 1:size((fsmPol),1)
 stoltPol(i,:) = interp1(kx(i,:),fsmPol(i,:),krange(1,:));
end
stoltPol(isnan(stoltPol)) = 1e-30;
stoltPol = stoltPol.*exp(-1i*krange.*Rc);
azcompresseddata = ifft2(stoltPol);
end

Back-Projection Algorithm

function data = helperBackProjection(sigdata,rnggrid,fastTime,fc,fs,prf,speed,crossRangeResolution,c)

This function demonstrates the time-domain back projection algorithm for imaging the side-looking
synthetic aperture radar. The pulsed compressed synthetic aperture data is taken as input in this
algorithm. Initialize the output matrix.

data = zeros(size(sigdata));
azimuthDist = -200:speed/prf:200;%azimuth distance

Limit the range and cross-range pixels being processed to reduce processing time.

rangelims = [700 1400];
crossrangelims = [-10 10];

Index the range grid in accordance with the range limits.

1 Featured Examples

1-308

rangeIdx = [find(rnggrid>rangelims(1), 1) find(rnggrid<rangelims(2),1,'last')];

Index the azimuth distance in accordance with the cross-range limits.

crossrangeIdxStart = find(azimuthDist>crossrangelims(1),1);
crossrangeIdxStop = find(azimuthDist<crossrangelims(2),1,'last');
for i= rangeIdx(1):rangeIdx(2) % Iterate over the range indices

 % Using desired cross-range resolution, compute the synthetic aperture
 % length
 lsynth= (c/fc)* (c*fastTime(i)/2)/(2*crossRangeResolution);
 lsar = round(lsynth*length(azimuthDist)/azimuthDist(end)) ;
 % Ensure lsar is an odd number
 lsar = lsar + mod(lsar,2);

 % Construct hanning window for cross-range processing, to suppress the
 % azimuthal side lobes
 hn= hanning(lsar).';
 % Iterate over the cross-range indices
 for j= crossrangeIdxStart:crossrangeIdxStop
 % azimuth distance in x direction over cross-range indices
 posx= azimuthDist(j);
 % range in y-direction over range indices
 posy= c*fastTime(i)/2;
 % initializing count to zero
 count= 0;
 % Iterate over the synthetic aperture
 for k= j-lsar/2 +1:j+ lsar/2
 % Time delay for each of range and cross-range indices
 td= sqrt((azimuthDist(k)- posx)^2 + posy^2)*2/c;
 cell= round(td*fs) +1 ;
 signal = sigdata(cell,k);
 count= count + hn(k -(j-lsar/2))*signal *exp(1j*2*pi*fc*(td));
 end
 % Processed data at each of range and cross-range indices
 data(i,j)= count;
 end

end
end

 Stripmap Synthetic Aperture Radar (SAR) Image Formation

1-309

Squinted Spotlight Synthetic Aperture Radar (SAR) Image
Formation

This example shows how to model a spotlight-based Synthetic Aperture Radar (SAR) system using a
Linear FM (LFM) Waveform. In case of squint mode, the SAR platform is squinted either to look
forward or backward by certain angle from broadside depending upon the need. The squint mode
helps in imaging regions lying ahead of the current radar platform location or to image locations
lying behind the platform location for interferometric applications. The challenge in squint mode is
higher due to the range azimuth coupling. Because the resolution of SAR depends upon the signal
and antenna configuration, resolution can be much higher than for vision-based imaging systems.
Using spotlight mode, this example performs range migration algorithm [1,3] to image stationary
targets lying ahead of the SAR platform location. A Linear FM waveform offers the advantage of large
time-bandwidth product at a considerably lower transmit power making it suitable for use in airborne
systems. For more details on the terminology used in this example, see “Stripmap Synthetic Aperture
Radar (SAR) Image Formation” on page 1-299.

1 Featured Examples

1-310

Radar Configuration

Consider an airborne SAR operating in C-band with a 4 GHz carrier frequency and a signal bandwidth
of 50 MHz. This bandwidth yields a range resolution of 3 meters. The radar system collects data at a
squint angle of 33 degrees from the broadside as shown in the figure above. The delay corresponds in
general to the slant range between the target and the platform. For a SAR system, the slant range
will vary over time as the platform traverses a path orthogonal to the direction of antenna beam. This
section below focuses on defining the parameters for the transmission waveform. The LFM sweep
bandwidth can be decided based on the desired range resolution.

c = physconst('LightSpeed');

Set the SAR center frequency.

fc = 4e9;% Hz

 Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation

1-311

Set the desired range and cross-range resolution to 3 meters.

rangeResolution = 3;% meters
crossRangeResolution = 3;% meters

The signal bandwidth is a parameter derived from the desired range resolution.

bw = c/(2*rangeResolution);

prf = 1000;% Hz
aperture = 4;% sq. meters
tpd = 3*10^-6; % sec
fs = 120*10^6; % Hz

Configure the LFM signal of the radar.

waveform = phased.LinearFMWaveform('SampleRate',fs, 'PulseWidth', tpd, 'PRF', prf,...
 'SweepBandwidth', bw);

Assume the speed of aircraft is 100 m/s with a flight duration of 4 seconds.

speed = 100;% m/s
flightDuration = 4;% sec
radarPlatform = phased.Platform('InitialPosition', [0;-600;500], 'Velocity', [0; speed; 0]);
slowTime = 1/prf;
numpulses = flightDuration/slowTime +1;
eta1 = linspace(0,flightDuration ,numpulses)';

maxRange = 2500;
truncrangesamples = ceil((2*maxRange/c)*fs);
fastTime = (0:1/fs:(truncrangesamples-1)/fs);
% Set the reference range for the cross-range processing.
Rc = 1e3;% meters

Configure the SAR transmitter and receiver. The antenna looks in the broadside direction orthogonal
to the flight direction.

antenna = phased.CosineAntennaElement('FrequencyRange', [1e9 6e9]);
antennaGain = aperture2gain(aperture,c/fc);

transmitter = phased.Transmitter('PeakPower', 1e3, 'Gain', antennaGain);
radiator = phased.Radiator('Sensor', antenna,'OperatingFrequency', fc, 'PropagationSpeed', c);

collector = phased.Collector('Sensor', antenna, 'PropagationSpeed', c,'OperatingFrequency', fc);
receiver = phased.ReceiverPreamp('SampleRate', fs, 'NoiseFigure', 30);

Configure the propagation channel.

channel = phased.FreeSpace('PropagationSpeed', c, 'OperatingFrequency', fc,'SampleRate', fs,...
 'TwoWayPropagation', true);

Scene Configuration

In this example, two static point targets are configured at locations specified below. The entire scene
as shown further in the simulation lies ahead of the platform. The data collection ends before the
airborne platform is abreast of the target location. All targets have a mean RCS value of 1 meter-
squared.

1 Featured Examples

1-312

targetpos= [900,0,0;1000,-30,0]';

targetvel = [0,0,0;0,0,0]';

The squint angle calculation depends on the flight path and center of the target scene which is
located at nearly 950 meters in this case.

squintangle = atand(600/950);
target = phased.RadarTarget('OperatingFrequency', fc, 'MeanRCS', [1,1]);
pointTargets = phased.Platform('InitialPosition', targetpos,'Velocity',targetvel);
% The figure below describes the ground truth based on the target
% locations.
figure(1);
h = axes;plot(targetpos(2,1),targetpos(1,1),'*b');hold all;plot(targetpos(2,2),targetpos(1,2),'*r');hold off;
set(h,'Ydir','reverse');xlim([-50 10]);ylim([800 1200]);
title('Ground Truth');ylabel('Range');xlabel('Cross-Range');

SAR Signal Simulation

The following section describes how the system operates based on the above configuration.
Specifically, the section below shows how the data collection is performed for a SAR platform. As the
platform moves in the cross-range direction, pulses are transmitted and received in directions defined
by the squint angle with respect to the flight path. A collection of pulses gives the phase history of the
targets lying in the illumination region as the platform moves. The longer the target lies in the
illumination region, the better the cross-range resolution for the entire image because the process of
range and cross-range focusing is generalized for the entire scene.

 Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation

1-313

rxsig = zeros(truncrangesamples,numpulses);
for ii = 1:numpulses
 % Update radar platform and target position
 [radarpos, radarvel] = radarPlatform(slowTime);
 [targetpos,targetvel] = pointTargets(slowTime);

 % Get the range and angle to the point targets
 [targetRange, targetAngle] = rangeangle(targetpos, radarpos);

 % Generate the LFM pulse
 sig = waveform();
 % Use only the pulse length that will cover the targets.
 sig = sig(1:truncrangesamples);

 % Transmit the pulse
 sig = transmitter(sig);

 % Radiate the pulse towards the targets
 sig = radiator(sig, targetAngle);

 % Propagate the pulse to the point targets in free space
 sig = channel(sig, radarpos, targetpos, radarvel, targetvel);

 % Reflect the pulse off the targets
 sig = target(sig);

 % Collect the reflected pulses at the antenna
 sig = collector(sig, targetAngle);

 % Receive the signal
 rxsig(:,ii) = receiver(sig);

end

kc = (2*pi*fc)/c;
% Compensate for the doppler due to the squint angle
rxsig=rxsig.*exp(-1i.*2*(kc)*sin(deg2rad(squintangle))*repmat(speed*eta1,1,truncrangesamples)).';

Visualize the received signal.

The received signal can now be visualized as a collection of multiple pulses transmitted in the cross-
range direction. The plots show the real part of the signal for the two targets. The chirps appear
tilted due to the squint angle of the antenna.

imagesc(real(rxsig));title('SAR Raw Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

1 Featured Examples

1-314

Perform range compression.

The range compression will help achieve the desired range resolution for a bandwidth of 50 MHz.

pulseCompression = phased.RangeResponse('RangeMethod', 'Matched filter', 'PropagationSpeed', c, 'SampleRate', fs);
matchingCoeff = getMatchedFilter(waveform);
[cdata, rnggrid] = pulseCompression(rxsig, matchingCoeff);

The figure below shows the response after range compression has been achieved on the received
signal. The phase histories of the two targets are clearly visible along the cross-range direction and
range focusing has been achieved.

imagesc(real(cdata(800:1100,:)));title('SAR Range Compressed Data')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

 Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation

1-315

Azimuth Compression

There are multiple techniques to process the cross-range data and get the final image from the SAR
raw data once range compression has been achieved. In essence, the range compression helps
achieve resolution in the fast-time or range direction and the resolution in the cross-range direction is
achieved by azimuth or cross-range compression. Range Migration algorithm for squint case has been
demonstrated in this example. The azimuth focusing needs to account for the squint induced due to
antenna tilt.

rma_processed = helperSquintRangeMigration(cdata,fastTime,fc,fs,prf,speed,numpulses,c,Rc,squintangle);

Visualize the final SAR image.

Plot the focused SAR image using the range migration algorithm. Only a section of the image formed
via the range migration algorithm is shown to accurately point the location of the targets. The range
migration as shown by [1], [2] and [3] provides theoretical resolution in the cross-track as well as
along-track direction.

figure(2);
imagesc(abs(rma_processed(2300:3600,1100:1400).'));
title('SAR Data focused using Range Migration algorithm ')
xlabel('Cross-Range Samples')
ylabel('Range Samples')

1 Featured Examples

1-316

Summary

This example shows how to simulate and develop Squint mode Spotlight SAR processing leveraging a
LFM signal in an airborne data collection scenario. The example also demonstrates image generation
from the received signal via modified range migration algorithm to handle the effect due to squint.

References
1 Cafforio, C., Prati, C. and Rocca, F., 1991. SAR data focusing using seismic migration techniques.

IEEE transactions on aerospace and electronic systems, 27(2), pp.194-207.
2 Soumekh, M., 1999. Synthetic Aperture Radar Signal Processing with MATLAB algorithms. John

Wiley & Sons, Inc.
3 Stolt, R.H., Migration by Fourier transform techniques, Geophysics, 1978, 43, pp. 23-48

Appendix

Range Migration Algorithm

function azcompresseddata = helperSquintRangeMigration(sigData,fastTime,fc,fs,prf,speed,numPulses,c,Rc,squintangle)

This function demonstrates the range migration algorithm for imaging the side looking synthetic
aperture radar.The pulsed compressed synthetic aperture data is considered in this algorithm.

Set the range frequency span.

frequencyRange = linspace(fc-fs/2,fc+fs/2,length(fastTime));
krange = 2*(2*pi*frequencyRange)/c;

 Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation

1-317

Set the cross-range wavenumber.

kaz = 2*pi*linspace(-prf/2,prf/2,numPulses)./speed;

Generate a matrix of the cross-range wavenumbers to match the size of the received two-dimensional
SAR signal

kc = 2*pi*fc/3e8;
kazimuth = kaz.';
kus=2*(kc)*sin(deg2rad(squintangle));
kx = krange.^2-(kazimuth+kus).^2;

The wavenumber has been modified to accommodate shift due to squint and achieve azimuth
focusing.

thetaRc = deg2rad(squintangle);
kx = sqrt(kx.*(kx > 0));

kFinal = exp(1i*(kx.*cos(thetaRc)+(kazimuth).*sin(thetaRc)).*Rc);
kfin = kx.*cos(thetaRc)+(kazimuth+kus).*sin(thetaRc);

Perform a two-dimensional FFT on the range compressed signal.

sdata =fftshift(fft(fftshift(fft(sigData,[],1),1),[],2),2);

Perform bulk compression to get the azimuth compression at the reference range. Perform filtering of
the 2-D FFT signal with the new cross-range wavenumber to achieve complete focusing at the
reference range and as a by-product, partial focusing of targets not lying at the reference range.

fsmPol = (sdata.').*kFinal;

Perform Stolt Interpolation to achieve focusing for targets that are not lying at the reference range

stoltPol = fsmPol;
for i = 1:size((fsmPol),1)
 stoltPol(i,:) = interp1(kfin(i,:),fsmPol(i,:),krange(1,:));
end
stoltPol(isnan(stoltPol)) = 1e-30;

azcompresseddata = ifftshift(ifft2(stoltPol),2);

end

1 Featured Examples

1-318

Synthetic Aperture Radar System Simulation and Image
formation

This example demonstrates how to model a Synthetic Aperture RADAR (SAR) system using Stepped
Frequency Modulated (SFM) waveform and generate a SAR image in Simulink®. In this example a
SAR platform is defined along with the waveform it transmits. The receiver is modeled to handle the
matched filtering and azimuth processing of different sub pulses of the SFM waveform. A similar
example in MATLAB using Linear Frequency Modulated (LFM) waveform can be found in “Stripmap
Synthetic Aperture Radar (SAR) Image Formation” on page 1-299.

Introduction

The model shows a SAR system setup to simulate IQ returns and perform image formation from the
IQ data. The aircraft/airborne platform in this example exploits SFM waveform and its corresponding
processing. The SFM waveform is an alternative technique to obtain larger bandwidth and it has
some advantages over conventional LFM waveform.

As the SFM constructs a wide-band chirp from a burst of narrow-band chirps it provides improved
noise figure and receiver sensitivity because of the narrow instantaneous bandwidth.

helperslexSARSystemSim('openModel');

The model has various sections Tx, Channel, Target, Platform and Rx. Tx section simulates the
generation and transmission of SFM waveform. The channel section models the two-way propagation
of the signal to and from the target. The target section models three point targets located at 800 m,
1000 m and 1300 m each with a mean RCS of 1. The platform subsystem models the flight path. The
Rx section simulates the reception, range, and azimuth processing of SAR raw data.

Waveform Generation

The Waveform Generation subsystem includes a SFM waveform generating module. The transmitted
SFM burst consists of 4 sub pulses with PRF of 1000 Hz such that it satisfies the criteria for
maximum unambiguous range and maximum Doppler. The coefficients for matched filtering the IQ
data at the receiver are also generated in this module.

helperslexSARSystemSim('showWaveform');

 Synthetic Aperture Radar System Simulation and Image formation

1-319

Platform

The platform subsystem simulates the motion of flight on which the synthetic aperture radar is
mounted. It is a triggered subsystem that mimics a stop and go assumption as the platform moves
from a position A to position B transmitting and receiving the burst of pulses at each position. Hence,
the platform remains at a position until all the sub pulses in a burst are transmitted and received. The
sub pulses here implies the 4 steps of the SFM waveform transmitted and received at each position
along the flight path. The platform is at a height of 500 m moving in the cross-range direction at a
velocity of 100 m/s.

helperslexSARSystemSim('showPlatform');

Range Processing

This is the first step in obtaining the SAR image. The Range Processing subsystem depicts how we
perform the matched filtering for the waveform burst. The most convenient method for matched
filtering the SFM waveform burst is the pulse by pulse processing. In pulse by pulse processing, first
each individual sub pulse in the burst is matched filter using the matched coefficients generated from
the waveform generation subsystem. Secondly, after matched filtering of the sub pulses they are

1 Featured Examples

1-320

integrated together to complete the matched filtering of the entire burst. The pulse compressed sub
pulses are coherently integrated to obtain the range compressed data.

helperslexSARSystemSim('showRangeProcessing');

Azimuth Processing

Azimuth Processing subsystem models the final step in obtaining the SAR image. This subsystem
implements Range Migration Algorithm (RMA) to focus the SAR image. The range compressed data is
buffered to obtain data from every range bin before performing azimuth processing which focuses the
image in cross-range/azimuth direction.

helperslexSARSystemSim('showAzimuthProcessing');

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexSARSystemParam. To open the function from the model, click on Modify Simulation
Parameters block. This function is executed once the model is loaded. It exports to the workspace a
structure whose fields are referenced by the dialogs. To modify any parameters, either change the
values in the structure at the command prompt or edit the helper function and rerun it to update the
parameter structure.

Results and Display

The results below show the processed data at different stages of the simulation.

helperslexSARSystemSim('runModel');

The below image shows data after range processing of the burst waveform.

helperslexSARSystemSim('showRangeCompressed');

 Synthetic Aperture Radar System Simulation and Image formation

1-321

The below image shows SAR image after range and azimuth focusing.

helperslexSARSystemSim('showSARImage');

1 Featured Examples

1-322

Summary

This example exhibits how to use a SFM waveform for a SAR imaging system mounted on an aircraft
to image targets on the ground. The example models the entire system in Simulink® and shows how
to use the SFM waveform and its corresponding processing.

helperslexSARSystemSim('closeModel');

 Synthetic Aperture Radar System Simulation and Image formation

1-323

Processing Radar Reflections Acquired with the Demorad
Radar Sensor Platform

Introduction

This example demonstrates how to process and visualize FMCW echoes acquired via the Demorad
Radar Sensor Platform with the Phased Array System Toolbox™. By default, I/Q samples and
operating parameters are read from a binary file that is provided with this example. Optionally, the
same procedure can be used to transmit, receive, and process FMCW reflections from live I/Q
samples with your own Demorad by following the instructions later in the example. Acquiring and
processing results in one environment decreases development time, and facilitates the rapid
prototyping of radar signal processing systems.

Required Hardware and Software

This example requires Phased Array System Toolbox™.

For live processing:

• Optionally, Analog Devices® Demorad Radar Sensor Platform (and drivers)
• Optionally, Phased Array System Toolbox™ Add-On for Demorad

The Analog Devices® Demorad Radar Sensor Platform has an operating frequency of 24 GHz, and a
maximum bandwidth of 250 MHz. The array on the platform is comprised of 2 transmit elements, and
4 receive elements. The receive elements are spaced every half-wavelength of the operating
frequency, arranged as a linear array. The transmit elements are also arranged as a linear array, and
are spaced three half-wavelengths apart. The transmit and receive elements can be seen in the image
below.

Installing the Drivers and Add-on

1 Featured Examples

1-324

https://www.mathworks.com/products/phased-array.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-DEMORAD.html
https://www.mathworks.com/matlabcentral/fileexchange/?term=tag:"phasedarraydemorad"

1 Download the Demorad drivers and MATLAB files from the USB-drive provided by Analog
Devices® with the Demorad

2 Save these to a permanent location on your PC
3 Add the folder containing the MATLAB files to the MATLAB path permanently
4 Power up the Demorad and connect to the PC via the Mini-USB port
5 Navigate to the Device Manager and look for the "BF707 Bulk Device"
6 Right-click on "BF707 Bulk Device" and select "Update driver"
7 Select the option "Browse my computer for driver software"
8 Browse to, and select the "drivers" folder from the USB-drive
9 Install the Phased Array System Toolbox™ Add-On for Demorad from the MATLAB Add-On

Manager

Radar Setup and Connection

In this section, we setup the source of the I/Q samples as the default option of the binary file reader.
Also contained in this file are the parameters that define the transmitted FMCW chirp, which were
written at the time the file was created. If you would like to run this example using live echoes from
the Demorad, follow the steps in Installing the Drivers and Add-On and set the "usingHW" flag
below to "true". The example will then communicate with the Demorad to transmit an FMCW
waveform with the radar operating parameters defined below, and send the reflections to MATLAB.
The "setup" method below is defined by the object representing the Demorad. "setup" serves both to
power on, and send parameters to the Demorad.

usingHW = false; % Set to "true" to use Demorad Radar Sensor Platform

if ~usingHW
 % Read I/Q samples from a recorded binary file
 radarSource = RadarBasebandFileReader('./DemoradExampleIQData.bb',256);
else
 % Instantiate the Demorad Platform interface
 radarSource = DemoradBoard;

 radarSource.SamplesPerFrame = 256; % Number of samples per frame
 radarSource.AcquisitionTime = 30; % Length of time to acquire samples (s)

 % Define operating parameters
 radarSource.RampTime = 280e-6; % Pulse ramp time (s)
 radarSource.PRI = 300e-6; % Pulse Repetition interval (s)
 radarSource.StartFrequency = 24e9; % Pulse start frequency (Hz)
 radarSource.StopFrequency = 24.25e9; % Pulse stop frequency (Hz)
 radarSource.NumChirps = 1; % Number of pulses to process

 % Establish the connection with the Demorad
 setup(radarSource);
end

Radar Capabilities

Based on the operating parameters defined above, the characteristics of the radar system can be
defined for processing and visualizing the reflections. The equations used for calculating the
capabilities of the radar system with these operating parameters can be seen below:

Range Resolution

 Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform

1-325

The range resolution (in meters) for a radar with a chirp waveform is defined by the equation

where is the bandwidth of the transmitted pulse:

c0 = physconst('LightSpeed');
wfMetadata = radarSource.Metadata; % Struct of waveform metadata
bandwidth = wfMetadata.StopFrequency ...
 - wfMetadata.StartFrequency; % Chirp bandwidth
rangeRes = c0/(2*bandwidth) % Range resolution (m)

rangeRes =

 0.5996

Maximum Range

The Demorad platform transmits an FMCW pulse as a chirp, or sawtooth waveform. As such, the
theoretical maximum range of the radar (in meters) can be calculated using

where is the chirp rate. The effective range in practice may vary due to environmental factors such
as SNR, interference, or size of the testing facility.

kf = bandwidth/wfMetadata.RampTime; % Chirp rate
maxRange = radarSource.SampleRate*c0/(2*kf) % Maximum range (m)

maxRange =

 158.2904

Beamwidth

The effective beamwidth of the radar board can be approximated by the equation

where is the wavelength of the pulse, and is the element spacing.

lambda = c0/radarSource.CenterFrequency; % Signal wavelength
rxElementSpacing = lambda/2;
beamwidth = rad2deg(lambda/ ...
 (radarSource.NumChannels*rxElementSpacing)) % Effective beamwidth

beamwidth =

1 Featured Examples

1-326

 28.6479

With a transmit bandwidth of 250 MHz, and a 4-element receive array, the range and angular
resolution are sufficient to resolve multiple closely spaced objects. The I/Q samples recorded in the
binary file are returned from the Demorad platform without any additional digital processing. FMCW
reflections received by the Demorad are down-converted to baseband in hardware, decimated, and
transferred to MATLAB.

Signal Processing Components

The algorithms used in the signal processing loop are initialized in this section. After receiving the
I/Q samples, a 3-pulse canceller removes detections from stationary objects. The output of the 3-pulse
canceller is then beamformed, and used to calculate the range response. A CFAR detector is used
following the range response algorithm to detect any moving targets.

3-Pulse Canceller

The 3-pulse canceller used following the acquisition of the I/Q samples removes any stationary clutter
in the environment. The impulse response of a 3-pulse canceller is given as

This equation is implemented in the pulse canceller algorithm defined below.

threePulseCanceller = PulseCanceller('NumPulses',3);

Range Response

The algorithms for calculating the range response are initialized below. For beamforming, the sensor
array is modeled using the number of antenna elements and the spacing of the receive elements. The
sensor array model and the operating frequency of the Demorad are required for the beamforming
algorithm. Because the Demorad transmits an FMCW waveform, the range response is calculated
using an FFT.

antennaArray = phased.ULA('NumElements',radarSource.NumChannels, ...
 'ElementSpacing',rxElementSpacing);

beamFormer = phased.PhaseShiftBeamformer('SensorArray',antennaArray, ...
'Direction',[0;0],'OperatingFrequency',radarSource.CenterFrequency);

% Setup the algorithm for processing
NFFT = 4096;
rangeResp = phased.RangeResponse(...
 'DechirpInput', false, ...
 'RangeMethod','FFT', ...
 'ReferenceRangeCentered', false, ...
 'PropagationSpeed',c0, ...
 'SampleRate',radarSource.SampleRate, ...
 'SweepSlope',kf*2, ...
 'RangeFFTLengthSource','Property', ...
 'RangeFFTLength',NFFT, ...
 'RangeWindow', 'Hann');

CFAR Detector

A constant false alarm rate (CFAR) detector is then used to detect any moving targets.

 Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform

1-327

cfar = phased.CFARDetector('NumGuardCells',6,'NumTrainingCells',10);

Scopes

Setup the scopes to view the processed FMCW reflections. We set the viewing window of the range-
time intensity scope to 15 seconds.

timespan = 15;

% The Demorad returns data every 128 pulse repetition intervals
rangeScope = phased.RTIScope(...
 'RangeResolution',maxRange/NFFT,...
 'TimeResolution',wfMetadata.PRI*128, ...
 'TimeSpan', timespan, ...
 'IntensityUnits','power');

Simulation and Visualization

Next, the samples are received from the binary file reader, processed, and shown in the scopes. This
loop will continue until all samples are read from the binary file. If using the Demorad, the loop will
continue for 30 seconds, defined by the "AcquisitionTime" property of the object that represents the
board. Only ranges from 0 to 15 meters are shown since we have a priori knowledge the target
recorded in the binary file is within this range.

while ~isDone(radarSource)
 % Retrieve samples from the I/Q sample source
 x = radarSource();

 % Cancel out any pulses from non-moving objects and beamform
 y = threePulseCanceller(x);
 y = beamFormer(y);

 % Calculate the range response and convert to power
 resp = rangeResp(y);
 rangepow = abs(resp).^2;

 % Use the CFAR detector to detect any moving targets from 0 - 15 meters
 maxViewRange = 15;
 rng_grid = linspace(0,maxRange,NFFT).';
 [~,maxViewIdx] = min(abs(rng_grid - maxViewRange));
 detIdx = false(NFFT,1);
 detIdx(1:maxViewIdx) = cfar(rangepow,1:maxViewIdx);

 % Remove non-detections and set a noise floor at 1/10 of the peak value
 rangepow = rangepow./max(rangepow(:)); % Normalize detections to 1 W
 noiseFloor = 1e-1;
 rangepow(~detIdx & (rangepow < noiseFloor)) = noiseFloor;

 % Display ranges from 0 - 15 meters in the range-time intensity scope
 rangeScope(rangepow(1:maxViewIdx));
end

1 Featured Examples

1-328

 Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform

1-329

The scope shows a single target moving away from the Demorad Radar Sensor Platform until about
~10 meters away, then changing direction again to move back towards the platform. The range-time
intensity scope shows the detection ranges.

Summary

This example demonstrates how to interface with the Analog Devices® Demorad Radar Sensor
Platform to acquire, process, and visualize radar reflections from live data. This capability enables the
rapid prototyping and testing of radar signal processing systems in a single environment, drastically
decreasing development time.

1 Featured Examples

1-330

Detector Performance Analysis Using ROC Curves
This example shows how you can assess the performance of both coherent and noncoherent systems
using receiver operating characteristic (ROC) curves. It assumes the detector operates in an additive
complex white Gaussian noise environment.

ROC curves are often used to assess the performance of a radar or sonar detector. ROC curves are
plots of the probability of detection (Pd) vs. the probability of false alarm (Pfa) for a given signal-to-
noise ratio (SNR).

Introduction

The probability of detection (Pd) is the probability of saying that "1" is true given that event "1"
occurred. The probability of false alarm (Pfa) is the probability of saying that "1" is true given that the
"0" event occurred. In applications such as sonar and radar, the "1" event indicates that a target is
present, and the "0" event indicates that a target is not present.

A detector's performance is measured by its ability to achieve a certain probability of detection and
probability of false alarm for a given SNR. Examining a detector's ROC curves provides insight into
its performance. We can use the rocsnr function to calculate and plot ROC curves.

Single Pulse Detection

Given an SNR value, you can calculate the Pd and Pfa values that a linear or square-law detector can
achieve using a single pulse. Assuming we have an SNR value of 8 dB and our requirements dictate a
Pfa value of at most 1%, what value of Pd can the detector achieve? We can use the rocsnr function to
calculate the Pd and Pfa values and then determine what value of Pd corresponds to Pfa = 0.01. Note
that by default the rocsnr function assumes coherent detection.

[Pd,Pfa] = rocsnr(8);

idx = find(Pfa==0.01); % find index for Pfa=0.01

Using the index determined above we can find the Pd value that corresponds to Pfa = 0.01.

Pd(idx)

ans = 0.8899

One feature of the rocsnr function is that you can specify a vector of SNR values and rocsnr
calculates the ROC curve for each of these SNR values. Instead of individually calculating Pd and Pfa
values for a given SNR, we can view the results in a plot of ROC curves. The rocsnr function plots the
ROC curves by default if no output arguments are specified. Calling the rocsnr function with an input
vector of four SNR values and no output arguments produces a plot of the ROC curves.

SNRvals = [2 4 8 9.4];
rocsnr(SNRvals);

 Detector Performance Analysis Using ROC Curves

1-331

In the plot we can select the data cursor button in the toolbar (or in the Tools menu) and then select
the SNR = 8 dB curve at the point where Pd = 0.9 to verify that Pfa is approximately 0.01.

Multiple Pulse Detection

One way to improve a detector's performance is to average over several pulses. This is particularly
useful in cases where the signal of interest is known and occurs in additive complex white noise.
Although this still applies to both linear and square-law detectors, the result for square-law detectors
could be off by about 0.2 dB. Let's continue our example by assuming an SNR of 8 dB and averaging
over two pulses.

rocsnr(8,'NumPulses',2);

1 Featured Examples

1-332

By inspecting the plot we can see that averaging over two pulses resulted in a higher probability of
detection for a given false alarm rate. With an SNR of 8 dB and averaging over two pulses, you can
constrain the probability of false alarm to be at most 0.0001 and achieve a probability of detection of
0.9. Recall that for a single pulse, we had to allow the probability of false alarm to be as much as 1%
to achieve the same probability of detection.

Noncoherent Detector

To this point, we have assumed we were dealing with a known signal in complex white Gaussian
noise. The rocsnr function by default assumes a coherent detector. To analyze the performance of a
detector for the case where the signal is known except for the phase, you can specify a noncoherent
detector. Using the same SNR values as before, let's analyze the performance of a noncoherent
detector.

rocsnr(SNRvals,'SignalType','NonfluctuatingNoncoherent');

 Detector Performance Analysis Using ROC Curves

1-333

Focus on the ROC curve corresponding to an SNR of 8dB. By inspecting the graph with the data
cursor, you can see that to achieve a probability of detection of 0.9, you must tolerate a false-alarm
probability of up to 0.05. Without using phase information, we need a higher SNR to achieve the
same Pd for a given Pfa. For noncoherent linear detectors, we can use Albersheim's equation to
determine what value of SNR will achieve our desired Pd and Pfa.

SNR_valdB = albersheim(0.9,.01) % Pd=0.9 and Pfa=0.01

SNR_valdB = 9.5027

Plotting the ROC curve for the SNR value approximated by Albersheim's equation, we can see that
the detector will achieve Pd = 0.9 and Pfa = 0.01. Note that the Albersheim's technique applies only
to noncoherent detectors.

rocsnr(SNR_valdB,'SignalType','NonfluctuatingNoncoherent');

1 Featured Examples

1-334

Detection of Fluctuating Targets

All the discussions above assume that the target is nonfluctuating, which means that the target's
statistical characteristics do not change over time. However, in real scenarios, targets can accelerate
and decelerate as well as roll and pitch. These factors cause the target's radar cross section (RCS) to
vary over time. A set of statistical models called Swerling models are often used to describe the
random variation in target RCS.

There are four Swerling models, namely Swerling 1-4. The nonfluctuating target is often termed
either Swerling 0 or Swerling 5. Each Swerling model describes how a target's RCS varies over time
and the probability distribution of the variation.

Because the target RCS is varying, the ROC curves for fluctuating targets are not the same as the
nonfluctuating ones. In addition, because Swerling targets add random phase into the received
signal, it is harder to use a coherent detector for a Swerling target. Therefore, noncoherent detection
techniques are often used for Swerling targets.

Let us now compare the ROC curves for a nonfluctuating target and a Swerling 1 target. In particular,
we want to explore what the SNR requirements are for both situations if we want to achieve the same
Pd and Pfa. For such a comparison, it is often easy to plot the ROC curve as Pd against SNR with
varying Pfa. We can use the rocpfa function to plot ROC curve in this form.

Let us assume that we are doing noncoherent detection with 10 integrated pulses, with the desired
Pfa being at most 1e-8. We first plot the ROC curve for a nonfluctuating target.

rocpfa(1e-8,'NumPulses',10,'SignalType','NonfluctuatingNoncoherent')

 Detector Performance Analysis Using ROC Curves

1-335

We then plot the ROC curve for a Swerling 1 target for comparison.

rocpfa(1e-8,'NumPulses',10,'SignalType','Swerling1')

1 Featured Examples

1-336

From the figures, we can see that for a Pd of 0.9, we require an SNR of about 6 dB if the target is
nonfluctuating. However, if the target is a Swerling case 1 model, the required SNR jumps to more
than 14 dB, an 8 dB difference. This will greatly impact the design of the system.

As in the case of nonfluctuating targets, we have approximation equations to help determine the
required SNR without having to plot all the curves. The equation used for fluctuating targets is
Shnidman's equation. For the scenario we used to plot the ROC curves, the SNR requirements can be
derived using the shnidman function.

snr_sw1_db = shnidman(0.9,1e-8,10,1) % Pd=0.9, Pfa=1e-8, 10 pulses,

snr_sw1_db = 14.7131

 % Swerling case 1

The calculated SNR requirement matches the value derived from the curve.

Summary

ROC curves are useful for analyzing detector performance, both for coherent and noncoherent
systems. We used the rocsnr function to analyze the effectiveness of a linear detector for various SNR
values. We also reviewed the improvement in detector performance achieved by averaging multiple
samples. Lastly we showed how we can use the rocsnr and rocpfa functions to analyze detector
performance when using a noncoherent detector for both nonfluctuating and fluctuating targets.

 Detector Performance Analysis Using ROC Curves

1-337

Monte-Carlo ROC Simulation
This example shows how to generate a receiver operating characteristic (ROC) curve of a radar
system using a Monte-Carlo simulation. The receiver operating characteristic determines how well
the system can detect targets while rejecting large spurious signal values when a target is absent
(false alarms). A detection system will declare presence or absence of a target by comparing the
received signal value to a preset threshold. The probability of detection (Pd) of a target is the
probability that the instantaneous signal value is larger than the threshold whenever a target is
actually present. The probability of false alarm (Pfa) is the probability that the signal value is larger
than the threshold when a target is absent. In this case, the signal is due to noise and its properties
depend on the noise statistics. The Monte-Carlo simulation generates a very large number of radar
returns with and without a target present. The simulation computes Pd and Pfa are by counting the
proportion of signal values in each case that exceed the threshold.

A ROC curve plots Pd as a function of Pfa. The shape of a ROC curve depends on the received SNR of
the signal. If the arriving signal SNR is known, then the ROC curve shows how well the system
performs in terms of Pd and Pfa. If you specify Pd and Pfa, then you can determine how much power
is needed to achieve this requirement.

You can use the function rocsnr to compute theoretical ROC curves. This example shows a ROC
curve generated by a Monte-Carlo simulation of a single-antenna radar system and compares that
curve with a theoretical curve.

Specify Radar Requirements

Set the desired probability of detection to be 0.9 and the probability of false alarm to be 10−6. Set the
maximum range of the radar to 4000 meters and the range resolution to 50 meters. Set the actual
target range to 3000 meters. Set the target radar cross-section to 1.5 square meters and set the
operating frequency to 10 GHz. All computations are performed in baseband.

c = physconst('LightSpeed');
pd = 0.9;
pfa = 1e-6;
max_range = 4000;
target_range = 3000.0;
range_res = 50;
tgt_rcs = 1.5;
fc = 10e9;
lambda = c/fc;

Any simulation that computes Pfa and pd requires processing of many signals. To keep memory
requirements low, process the signals in chunks of pulses. Set the number of pulses to process to
45000 and set the size of each chunk to 10000.

Npulse = 45000;
Npulsebuffsize = 10000;

Select Waveform and Signal Parameters

Calculate the waveform pulse bandwidth using the pulse range resolution. Calculate the pulse
repetition frequency from the maximum range. Because the signal is baseband, set the sampling
frequency to twice the bandwidth. Calculate the pulse duration from the pulse bandwidth.

pulse_bw = c/(2*range_res);
prf = c/(2*max_range);

1 Featured Examples

1-338

fs = 2*pulse_bw;
pulse_duration = 10/pulse_bw;
waveform = phased.LinearFMWaveform('PulseWidth',pulse_duration,...
 'SampleRate',fs,'SweepBandwidth',...
 pulse_bw,'PRF',prf);

Achieving a particular Pd and Pfa requires that sufficient signal power arrive at the receiver after the
target reflects the signal. Compute the minimum SNR needed to achieve the specified probability of
false alarm and probability of detection by using the Albersheim equation.

snr_min = albersheim(pd,pfa);

To to achieve this SNR, sufficient power must be transmitted to the target. Use the radar equation to
estimate the peak transmit power, peak_power, required to achieve the specified SNR in dB for the
target at a range of 3000 meters. The received signal also depends on the target radar cross-section
(RCS). which is assumed to follow a nonfluctuating model (Swerling 0). Set the radar to have
identical transmit and receive gains of 20 dB. The radar equation is given

txrx_gain = 20;
peak_power = ((4*pi)^3*noisepow(1/pulse_duration)*target_range^4*...
 db2pow(snr_min))/(db2pow(2*txrx_gain)*tgt_rcs*lambda^2)

peak_power = 293.1830

Set Up the Transmitter System Objects

Create System Objects that make up the transmission part of the simulation: radar platform, antenna,
transmitter, and radiator.

antennaplatform = phased.Platform(...
 'InitialPosition',[0; 0; 0],...
 'Velocity',[0; 0; 0]);
antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter(...
 'Gain',txrx_gain,...
 'PeakPower',peak_power,...
 'InUseOutputPort',true);
radiator = phased.Radiator(...
 'Sensor',antenna,...
 'OperatingFrequency',fc);

Set Up the Target System Object

Create a target System Object corresponding to an actual reflecting target with a non-zero target
cross-section. Reflections from this target will simulate actual radar returns. In order to compute
false alarms, create a second target System Object with zero radar cross section. Reflections from
this target are zero except for noise.

target{1} = phased.RadarTarget(...
 'MeanRCS',tgt_rcs,...
 'OperatingFrequency',fc);
targetplatform{1} = phased.Platform(...
 'InitialPosition',[target_range; 0; 0]);
target{2} = phased.RadarTarget(...
 'MeanRCS',0,...
 'OperatingFrequency',fc);

 Monte-Carlo ROC Simulation

1-339

targetplatform{2} = phased.Platform(...
 'InitialPosition',[target_range; 0; 0]);

Set Up Free-Space Propagation System Objects

Model the propagation environment from the radar to the targets and back.

channel{1} = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);
channel{2} = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Set Up Receiver System Objects

Specified the noise by setting the NoiseMethod property to 'Noise temperature' and the
ReferenceTemperature property to 290 K.

collector = phased.Collector(...
 'Sensor',antenna,...
 'OperatingFrequency',fc);
receiver = phased.ReceiverPreamp(...
 'Gain',txrx_gain,...
 'NoiseMethod','Noise temperature',...
 'ReferenceTemperature',290.0,...
 'NoiseFigure',0,...
 'SampleRate',fs,...
 'EnableInputPort',true);
receiver.SeedSource = 'Property';
receiver.Seed = 2010;

Specify Fast-Time Grid

The fast-time grid is the set of time samples within one pulse repetition time interval. Each sample
corresponds to a range bin.

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
rangebins = c*fast_time_grid/2;

Create Transmitted Pulse from Waveform

Create the waveform to you want to transmit.

wavfrm = waveform();

Create the transmitted signal that includes transmitted antenna gains.

[sigtrans,tx_status] = transmitter(wavfrm);

Create matched filter coefficients from the waveform System object. Then create the matched filter
System object™.

MFCoeff = getMatchedFilter(waveform);
matchingdelay = size(MFCoeff,1) - 1;
filter = phased.MatchedFilter(...

1 Featured Examples

1-340

 'Coefficients',MFCoeff,...
 'GainOutputPort',false);

Compute Target Range Bin

Compute the target range, and then compute the index into the range bin array. Because the target
and radar are stationary, use the same values of position and velocity throughout the simulation loop.
You can assume that the range bin index is constant for the entire simulation.

ant_pos = antennaplatform.InitialPosition;
ant_vel = antennaplatform.Velocity;
tgt_pos = targetplatform{1}.InitialPosition;
tgt_vel = targetplatform{1}.Velocity;
[tgt_rng,tgt_ang] = rangeangle(tgt_pos,ant_pos);
rangeidx = val2ind(tgt_rng,rangebins(2)-rangebins(1),rangebins(1));

Loop Over Pulses

Create a signal processing loop. Each step is accomplished by executing the System objects. The loop
processes the pulses twice, once for the target-present condition and once for target-absent
condition.

1 Radiate the signal into space using phased.Radiator.
2 Propagate the signal to the target and back to the antenna using phased.FreeSpace.
3 Reflect the signal from the target using phased.Target.
4 Receive the reflected signals at the antenna using phased.Collector.
5 Pass the received signal though the receive amplifier using phased.ReceiverPreamp. This step

also adds the random noise to the signal.
6 Match filter the amplified signal using phased.MatchedFilter.
7 Store the matched filter output at the target range bin index for further analysis.

rcv_pulses = zeros(length(sigtrans),Npulsebuffsize);
h1 = zeros(Npulse,1);
h0 = zeros(Npulse,1);
Nbuff = floor(Npulse/Npulsebuffsize);
Nrem = Npulse - Nbuff*Npulsebuffsize;
for n = 1:2 % H1 and H0 Hypothesis
 trsig = radiator(sigtrans,tgt_ang);
 trsig = channel{n}(trsig,...
 ant_pos,tgt_pos,...
 ant_vel,tgt_vel);
 rcvsig = target{n}(trsig);
 rcvsig = collector(rcvsig,tgt_ang);

 for k = 1:Nbuff
 for m = 1:Npulsebuffsize
 rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
 end
 rcv_pulses = filter(rcv_pulses);
 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
 if n == 1
 h1((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
 else
 h0((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
 end

 Monte-Carlo ROC Simulation

1-341

 end
 if (Nrem > 0)
 for m = 1:Nrem
 rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
 end
 rcv_pulses = filter(rcv_pulses);
 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
 if n == 1
 h1((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
 else
 h0((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
 end
 end
end

Create Histogram of Matched Filter Outputs

Compute histograms of the target-present and target-absent returns. Use 100 bins to give a rough
estimate of the spread of signal values. Set the range of histogram values from the smallest signal to
the largest signal.

h1a = abs(h1);
h0a = abs(h0);
thresh_low = min([h1a;h0a]);
thresh_hi = max([h1a;h0a]);
nbins = 100;
binedges = linspace(thresh_low,thresh_hi,nbins);
figure
histogram(h0a,binedges)
hold on
histogram(h1a,binedges)
hold off
title('Target-Absent Vs Target-Present Histograms')
legend('Target Absent','Target Present')

1 Featured Examples

1-342

Compare Simulated and Theoretical Pd and Pfa

To compute Pd and Pfa, calculate the number of instances that a target-absent return and a target-
present return exceed a given threshold. This set of thresholds has a finer granularity than the bins
used to create the histogram in the previous simulation. Then, normalize these counts by the number
of pulses to get an estimate of the probabilities. The vector sim_pfa is the simulated probability of
false alarm as a function of the threshold, thresh. The vector sim_pd is the simulated probability of
detection, also a function of the threshold. The receiver sets the threshold so that it can determine
whether a target is present or absent. The histogram above suggests that the best threshold is
around 1.8.

nbins = 1000;
thresh_steps = linspace(thresh_low,thresh_hi,nbins);
sim_pd = zeros(1,nbins);
sim_pfa = zeros(1,nbins);
for k = 1:nbins
 thresh = thresh_steps(k);
 sim_pd(k) = sum(h1a >= thresh);
 sim_pfa(k) = sum(h0a >= thresh);
end
sim_pd = sim_pd/Npulse;
sim_pfa = sim_pfa/Npulse;

To plot the experimental ROC curve, you must invert the Pfa curve so that you can plot Pd against
Pfa. You can invert the Pfa curve only when you can express Pfa as a strictly monotonic decreasing
function of thresh. To express Pfa this way, find all array indices where the Pfa is the constant over
neighboring indices. Then, remove these values from the Pd and Pfa arrays.

 Monte-Carlo ROC Simulation

1-343

pfa_diff = diff(sim_pfa);
idx = (pfa_diff == 0);
sim_pfa(idx) = [];
sim_pd(idx) = [];

Limit the smallest Pfa to 10−6.

minpfa = 1e-6;
N = sum(sim_pfa >= minpfa);
sim_pfa = fliplr(sim_pfa(1:N)).';
sim_pd = fliplr(sim_pd(1:N)).';

Compute the theoretical Pfa and Pd values from the smallest Pfa to 1. Then plot the theoretical Pfa
curve.

[theor_pd,theor_pfa] = rocsnr(snr_min,'SignalType',...
 'NonfluctuatingNoncoherent',...
 'MinPfa',minpfa,'NumPoints',N,'NumPulses',1);
semilogx(theor_pfa,theor_pd)
hold on
semilogx(sim_pfa,sim_pd,'r.')
title('Simulated and Theoretical ROC Curves')
xlabel('Pfa')
ylabel('Pd')
grid on
legend('Theoretical','Simulated','Location','SE')

1 Featured Examples

1-344

Improve Simulation Using One Million Pulses

In the preceding simulation, Pd values at low Pfa do not fall along a smooth curve and do not even
extend down to the specified operating regime. The reason for this is that at very low Pfa levels, very
few, if any, samples exceed the threshold. To generate curves at low Pfa, you must use a number of
samples on the order of the inverse of Pfa. This type of simulation takes a long time. The following
curve uses one million pulses instead of 45,000. To run this simulation, repeat the example, but set
Npulse to 1000000.

 Monte-Carlo ROC Simulation

1-345

Receiver Operating Characteristic to Tracker Operating
Characteristic

This example shows how to assess the probability of target track and the probability of false track.
The example discusses different methods to perform these calculations with varying levels of fidelity
and computation time.

In the assessment of tracker performance, there are four types of probabilities that are often desired:

1 Probability of single target track in the absence of false alarms Pfa = 0
2 Probability of single false track in the absence of targets Pd = 0
3 Probability of single target track in the presence of false alarms
4 Probability of single false track in the presence of targets

This example will first delve into the foundations of the Bernoulli sum, which will help us calculate
the probability of single target track in the absence of false alarms. We will then discuss the Common
Gate History (CGH) algorithm that can be used to calculate all 4 types of probabilities and introduce
the concept of the Tracker Operating Characteristic (TOC). The CGH algorithm provides an estimate
of system capacity and thus offers a means to assess end-to-end system performance. We will then
present an automotive radar design scenario and demonstrate the power of the CGH algorithm for
high-level system analysis.

Calculating Single Target Track Probability in the Absence of False Alarms

Bernoulli Sum

The Bernoulli sum allows for quick and easy performance analysis in the case of a single target in the
absence of false alarms. The track detection probability Pdt can be defined in terms of the receiver
detection probability Pd for a window period defined as

Tw = NT,

where T is the basic sampling period and N represents the number of opportunities for a detection.

For a confirmation threshold logic of M-of-N, the target track probability Pdt is defined as

Pdt = ∑i = M
N C N, i Pd

i 1− Pd
N − i ,

where

C N, i = N!
N − i !i! .

The confirmation threshold logic denoted as M-of-N or M/N is a one-stage logic where a track must
associate to a detection, also known as a hit, at least M times out of N consecutive looks. For
example, consider a 2-of-3 logic. In the figure below, the solid yellow represents a hit, which can be
from either a target or a false alarm. The patterned blue blocks represent misses. The cases
represented below are not intended to be exhaustive, but as can be seen, cases 2 and 3 satisfy the
threshold, but case 1 does not.

1 Featured Examples

1-346

Investigate the probability of target track versus probability of detection for a confirmation threshold
of 2/3 using the Bernoulli sum method. Note how quickly the computation is performed. Perform the
Bernoulli sum calculation assuming that one hit is required to initialize a track.

% Define probabilities for analysis
Pd = linspace(0,1,100).';

% Define confirmation threshold M/N
M = 2; % Number of hits
N = 3; % Number of observations or opportunities

% Perform Bernoulli sum assuming 1 hit is required to initialize a track
tic
PdtBernoulli = helperBernoulliSum(Pd,M,N);
elapsedTime = toc;
helperUpdate('Bernoulli',elapsedTime);

Bernoulli calculation completed. Total computation time is 0.0219 seconds.

% Plot the probability of detection versus the probability of target track
hAxes = helperPlot(Pd,PdtBernoulli,'M/N = 2/3','P_D','P_{DT}', ...
 sprintf('Bernoulli Sum\nProbability of Target Track in the Absence of False Alarms'));

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-347

% Set desired probability of target track
yline(hAxes,0.9,'--','LineWidth',2,'DisplayName','Desired P_{DT}');

Assuming that a probability of target track of 0.9 was desired, the above plot informs an analyst that
a detection probability of about 0.7 is required.

Calculating Probabilities for a Target in Clutter

The values obtained from a Bernoulli sum calculation are useful in quick analyses, but are not
generally representative of real tracking environments where target tracks are affected by the
presence of false alarms. Consider the scenario where a target is operating in the presence of clutter.

Assuming that false alarms occur on a per-look per-cell basis, the probability of false alarms in a
tracking gate depend upon the number of cells in the gate. Assume that there are three types of
events,

• Miss: No detection
• Hit: False alarm
• Hit: Target detection

The number of cells in a gate depends upon the history of events and the order in which events occur.
These factors dictate the gate growth sequence of the tracker.

1 Featured Examples

1-348

The Bernoulli sum method assumes that there are no false alarms and that the order of detections
does not matter. Thus, when using the Bernoulli sum in the target in clutter scenario, it produces
overly optimistic results.

One approach that is used to analyze such scenarios is to evaluate every possible track sequence and
determine which sequences satisfy the confirmation threshold logic. This brute-force approach of
building the Markov chain is generally too computationally intensive.

Another approach is to utilize a Monte Carlo-type analysis. Rather than generating the full Markov
chain, a Monte Carlo simulation manually generates random sequences of N events. The confirmation
threshold is applied to each sequence, and statistics are aggregated. The Monte Carlo method is
based upon the law of large numbers, so performance improves as the number of iterations increases.
Monte Carlo analysis lends itself well to parallelization, but in the case of small probabilities of false
alarm, the number of iterations can become quickly untenable. Thus, we need to consider alternative
methods to quickly calculate track probability measures.

The Common Gate History (CGH) Algorithm

The Common Gate History algorithm greatly reduces computation times and memory requirements.
The algorithm prevents the need for manual generation of sequences as in the case of the Monte
Carlo analysis, which can be costly for low-probability events.

The algorithm begins by making the assumption that there are three types of tracks, which can
contain:

1 Detections from targets
2 Detections from targets and false alarms
3 Detections from false alarms only

A target track is defined as any track that contains at least one target detection and satisfies the M/N
confirmation threshold. Thus, track types 1 and 2 are considered to be target tracks, whereas 3 is
considered to be a false track.

Given the previously defined track types and with a confirmation threshold logic M/N, a statistic is
proposed to identify a track state. A track state is defined as

ω = ωl, ωlt, λ

where ωl is the number of time steps since the last detection (target or false alarm), ωlt is the number
of time steps since the last target detection, and λ is the total count of detections (targets or false
alarms). As the algorithm proceeds, the track state vector evolves according to a Markov chain.

The algorithm assumes that a track can be started given only two types of events:

• Target detection
• False alarm

Once a track is initiated, the following four types of events continue a track:

• No detection
• Target detection
• False alarm

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-349

• Target detection and false alarm

The track probability at look m is multiplied by the probability of the event that continues the track at
look m + 1. The tracks are then lumped by adding the track probabilities of the track files with a
common gate history vector. This keeps the number of track states in the Markov chain within
reasonable limits.

The assumptions of the Common Gate History algorithm are as follows:

• The probability of more than one false alarm in a gate is low, which is true when the probability of
false alarm is low (10−3 or less).

• Assumes a uniform spatial distribution of the location of a target in a gate.
• Assumes a track splitting algorithm is used.

The Common Gate History algorithm can be used to calculate all four probability types:

1 Probability of single target track in the absence of false alarms Pfa = 0
2 Probability of single false track in the absence of targets Pd = 0
3 Probability of single target track in the presence of false alarms
4 Probability of single false track in the presence of targets

The probability of target track and the probability of false track form the basis of the Tracker
Operating Characteristic (TOC). The (TOC) complements the Receiver Operating Characteristic
(ROC), which is commonly used in the analysis and performance prediction of receivers. Combining
the ROC and the TOC provides an end-to-end system analysis tool.

Calculate and plot the TOC using ROC curves from rocsnr as inputs. Assume a signal-to-noise ratio
(SNR) of 8 dB. Continue to use the 2/3 confirmation threshold logic that was used in the Bernoulli
sum example. Use the toccgh built-in tracker. Note how quickly the computation is performed
despite the low probabilities of false alarms.

% Receiver operating characteristic (ROC)
snrdB = 8; % SNR (dB)
[Pd,Pfa] = rocsnr(snrdB,'MaxPfa',1e-3,'MinPfa',1e-12,'NumPoints',20);

% Plot ROC
helperPlotLog(Pfa,Pd,snrdB, ...
 'Probability of False Alarm (P_{FA})', ...
 'Probability of Detection (P_D)', ...
 'Receiver Operating Characteristic');

1 Featured Examples

1-350

% Common gate history algorithm
tic
[PdtCGH,PftCGH] = toccgh(Pd,Pfa,'ConfirmationThreshold',[M N]);
elapsedTime = toc;
helperUpdate('Common Gate History',elapsedTime);

Common Gate History calculation completed. Total computation time is 0.3951 seconds.

% Plot Common Gate History results
hAxes = helperPlotLog(PftCGH,PdtCGH,'CGH','P_{FT}','P_{DT}', ...
 'Tracker Operating Characteristic (TOC) Curve');

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-351

The Common Gate History algorithm permits the assessment of tracker performance similar to a
Monte Carlo analysis but with acceptable computation times despite low-probability events. The
Common Gate History algorithm thus permits high-level investigation and selection of options prior to
more intensive, detailed simulations.

Using CGH with Custom Trackers

Consider developing a tracker for an automotive application. Define a custom one-dimensional, nearly
constant velocity (NCV) tracker using trackingKF. Assume that the update rate Δt is 1 second.
Assume that the state transition matrix is of the form

A =
1 Δt
0 1

and the process noise is of the form

Q =
Δt4
4

Δt3
2

Δt3
2 Δt2

q,

where q is a tuning factor defined as

q = amax
2 Δt.

1 Featured Examples

1-352

The input amax
2 is the maximum target acceleration expected. Assume a maximum accelaration of 4

m/s2 is expected for vehicles.

% Define the state transition matrix
dt = 1; % Update rate (sec)
A = [1 dt; 0 1];

% Define the process noise
Q = [dt^4/4 dt^3/2; dt^3/2 dt^2];

% Tune the process noise
amax = 4; % Maximum target acceleration (m/s^2)
q = amax^2*dt;

% Update the process noise
Q = Q.*q;

% Initialize the Kalman filter
trkfilt = trackingKF('MotionModel','Custom', ...
 'StateCovariance', [0 0; 0 0], ...
 'StateTransitionModel',A, ...
 'ProcessNoise',Q, ...
 'MeasurementNoise',0, ...
 'MeasurementModel',[1 0]);

An error ellipse is used to model track uncertainty. From this uncertainty ellipse, the gate growth
sequence can be calculated.

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-353

The 1-σ values of the error ellipse are calculated as the square root of the eigenvalues λ of the
predicted state covariance Pk + 1 k:

[λ1, λ2] = eig(Pk + 1|k).

The area of the error ellipse is then calculated as

Error Ellipse Area = π λ 1 λ 2.

The area of the bins is calculated as

Bin Area = ΔRange ΔRange Rate .

Finally, the gate size in bins is

1 Featured Examples

1-354

Gate Size = Error Ellipse Area
Bin Area .

The gate size is thus dependent upon the tracker, the event sequence, and the resolution of the bins.
Calculate the gate growth sequence assuming a confirmation threshold N equal to 3. Assume the
range and range rate resolutions for the automotive radar are equal to 1 m and 1 m/s, respectively.

% Calculate gate growth sequence
res = [1, 1]; % Bin resolutions [range (m), range-rate (m/s)]
gs = helperCalculateGateSize(N,trkfilt,res)

gs = 1×3

 1 51 124

% Common gate history algorithm
tic
[PdtCGHcustom,PftCGHcustom] = toccgh(Pd,Pfa,'ConfirmationThreshold',[M N],'GateGrowthSequence',gs);
elapsedTime = toc;
helperUpdate('Common Gate History',elapsedTime);

Common Gate History calculation completed. Total computation time is 0.0520 seconds.

% Add plot to previous plot
helperAddPlotLog(hAxes,PftCGHcustom,PdtCGHcustom,'CGH with Custom Gate Growth Sequence');

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-355

Tracker Performance Assessment for an Automotive Radar System

Probability of False Alarm and Probability of Target Track Requirements

By using the ROC and TOC in conjunction, a system analyst can select a detector's operation point
that satisfies the overall system requirements. Consider an automotive radar case. Due to the nature
of the application, it is desired that false alarms remain very low probability events. Additionally, the
probability of target track should be high for safety purposes. Consider the following two
requirements.

• Requirement 1: Probability of false alarm must be less than 10−6

• Requirement 2: Probability of target track must be equal to 0.9 or above

Calculate the ROC curves for SNRs equal to 6, 8, 10, and 12 dB.

% Calculate ROC curves
snrdB = [6 8 10 12]; % SNR (dB)
[Pd,Pfa] = rocsnr(snrdB,'MaxPfa',1e-3,'MinPfa',1e-10,'NumPoints',10);

Use the calculated ROC curves as inputs to the toccgh function to generate the associated TOC
curves. Use the same confirmation threshold and gate growth sequence previously generated.

% Generate TOC curves
tic
toccgh(Pd,Pfa,'ConfirmationThreshold',[M N],'GateGrowthSequence',gs);
elapsedTime = toc;
helperUpdate('Common Gate History',elapsedTime);

Common Gate History calculation completed. Total computation time is 0.6848 seconds.

% Requirement 1: Probability of false alarms must be less than 1e-6
hAxesROC = subplot(2,1,1);
xlim([1e-10 1e-2])
ylim([0 1])
reqPfa = 1e-6;
helperColorZonesReqPfa(hAxesROC,reqPfa)
legend(hAxesROC,'Location','eastoutside')

% Requirement 2: Probability of target track must be equal to 0.9 or above
hAxesTOC = subplot(2,1,2);
xlim([1e-14 1e-4])
ylim([0 1])
reqPdt = 0.9;
helperColorZonesReqPdt(hAxesTOC,reqPdt)

1 Featured Examples

1-356

Requirement 1 dictates that only points 1 through 6 on the ROC curves may be included for further
analysis since they satisfy a probability lower than 10−6. Points 7 through 10 do not meet this
requirement.

Considering requirement 2, it can be seen that the ROC curve corresponding to 6 dB SNR does not
meet the second requirement at any point. The only curves to continue considering are the 8, 10, and
12 dB curves. Requirement 2 is met only for point 10 on the 8 dB curve, points 9 and 10 on the 10 dB
curve, and points 5 through 10 on the 12 dB curve.

Combining requirements 1 and 2, there are only two analysis points that satisfy both requirements:
Points 5 and 6 on the 12 dB curve. Point 5 corresponds to a probability of target track of 0.90 and a
probability of false track of 1 . 27 × 10−13. Translating these back to the ROC curve, this corresponds
to a probability of detection of 0.68 and a probability of false alarm of 1 . 29 × 10−7. Similarly, point 6
corresponds to a probability of target track of 0.96, probability of false track of 1 . 64 × 10−12, a
probability of detection of 0.80, and a probability of false alarm of 7 . 74 × 10−7. In this case,
operating point 6 is selected. It is a tradeoff of improved probability of target track at the expense of
a slightly higher but reasonable probability of false track.

The Common Gate History algorithm permits an estimation of the expected number of false tracks
based on the number of targets anticipated in an environment and the number of cells in the radar
data. The expected number of false tracks Eft is calculated as

Eft = Pft, ntNc + PftNt,

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-357

where Pft, nt is the probability of false track in the absence of targets, Nc is the number of cells, Pft is
the probability of false track in the presence of targets, and Nt is the number of targets.

Consider an environment where the number of targets are expected to be equal to 10 and the number
of cells is equal to

Number of Cells = Number of Range Cells × Number of Range Rate Cells = 1000 × 100 = 105 .

% Calculate expected number of false tracks using toccgh
numCells = 1e5; % Number of cells in radar data
numTargets = 10; % Number of targets in scenario
selectedPd = Pd(6,4) ; % Selected probability of detection
selectedPfa = Pfa(6); % Selected probability of false alarm
[Pdt,Pft,Eft] = toccgh(selectedPd,selectedPfa, ...
 'ConfirmationThreshold',[M N],'GateGrowthSequence',gs, ...
 'NumCells',numCells,'NumTargets',10);

% Output results
helperPrintTrackProbabilities(Pdt,Pft,Eft);

Probability of Target Track in Presence of False Alarms = 0.9581
Probability of False Track in the Presence of Targets = 1.6410e-12
Expected Number of False Tracks = 5

Thus, based on the system parameters, an analyst could expect about five false tracks.

Analysis of Confirmation Thresholds

Consider the same automotive radar design case but investigate the effect of confirmation thresholds
2/4, 3/4, and 4/4. Assume the following:

1 The probability of false alarm is equal to 10−6

2 The objective probability of target track is 0.9 or better

First, calculate the ROC curve using the rocpfa function.

% Calculate ROC curve assuming a probability of false alarm of 1e-6
Pfa = 1e-6;
numPoints = 20;
[Pd,snrdB] = rocpfa(Pfa,'NumPoints',numPoints,'MaxSNR',15);

Update the gate growth sequence due to the longer number of observations.

% Update the gate growth sequence
N = 4;
trkfilt = trackingKF('MotionModel','Custom', ...
 'StateCovariance', [0 0; 0 0], ...
 'StateTransitionModel',A, ...
 'ProcessNoise',Q, ...
 'MeasurementNoise',0, ...
 'MeasurementModel',[1 0]);
gs = helperCalculateGateSize(N,trkfilt,res)

gs = 1×4

 1 51 124 225

1 Featured Examples

1-358

Calculate the TOC given the ROC curves as inputs. Analyze for confirmation thresholds equal to 2/4,
3/4, and 4/4.

% Calculate TOC
cp = [2 4; 3 4; 4 4];
numCp = size(cp,1);
PdtMat = zeros(numPoints,numCp);
PftMat = zeros(numPoints,numCp);
EftMat = zeros(numPoints,numCp);
for ii = 1:numCp
 [PdtMat(:,ii),PftMat(:,ii),EftMat(:,ii)] = toccgh(Pd.',Pfa, ...
 'ConfirmationThreshold',cp(ii,:),'GateGrowthSequence',gs, ...
 'NumCells',numCells,'NumTargets',10);
end

% Plot ROC and TOC
reqPdt = 0.9;
helperPlotROCTOC(reqPdt,Pfa,Pd,snrdB,PdtMat,cp);

helperPrintReqValues(reqPdt,Pd,snrdB,PdtMat,EftMat,cp);

Confirmation Threshold = 2/4
Required Probability of Detection = 0.55
Required SNR (dB) = 10.76
Expected Number of False Tracks = 18

Confirmation Threshold = 3/4
Required Probability of Detection = 0.81

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-359

Required SNR (dB) = 12.03
Expected Number of False Tracks = 1

Confirmation Threshold = 4/4
Required Probability of Detection = 0.97
Required SNR (dB) = 13.37
Expected Number of False Tracks = 1

Reviewing the results, it can be seen that the more stringent the confirmation threshold, the higher
the required SNR. However, the more stringent confirmation thresholds result in improved numbers
of false tracks.

Summary

In the assessment of tracker performance, there are four types of probabilities that are often desired:

1 Probability of single target track in the absence of false alarms Pfa = 0
2 Probability of single false track in the absence of targets Pd = 0
3 Probability of single target track in the presence of false alarms
4 Probability of single false track in the presence of targets

For the calculation of 1, Bernoulli sums can be used. However, to obtain the other probabilities, a
different method must be employed. While Monte Carlo analysis can be used for the computation of
the latter three types of probabilities, the computational resources and time required can become
untenable, which is particularly true for events with low probability. The Common Gate History (CGH)
algorithm can be used to calculate all four quantities and greatly reduces computational resources
needed.

The Common Gate History algorithm can be used to generate the Tracker Operating Characteristic
(TOC). The TOC compliments the Receiver Operating Characteristic (ROC) and provides a means to
assess overall system performance. The TOC and ROC curves can be used in a multitude of ways such
as determining:

• Which track confirmation threshold should be selected
• Which detection threshold on the ROC curve should be used
• Whether the system SNR can meet the track probablity requirements.

Finally, the CGH algorithm permits the calculation of an expected number of false tracks, which offers
insights into system capacity. The expected number of false tracks can be used to ascertain
computational load and to assist with decisions related to hardware and processing.

References

1 Bar-Shalom, Y., L. J. Campo, and P. B. Luh. "From Receiver Operating Characteristic to System
Operating Characteristic: Evaluation of a Track Formation System." IEEE Transactions on
Automatic Control. Vol. 35, No. 2, February 1990.

2 Bar-Shalom, Y., P. K. Willett, and X. Tian. Tracking and Data Fusion: A Handbook of Algorithms.
Storrs, CT: YBS Publishing, 2011.

Helper Functions

function Pcnf = helperBernoulliSum(Pd,Mc,Nc)
% Calculate simple Bernoulli sum. Use the start TOC logic, which assumes

1 Featured Examples

1-360

% that there is already one hit that initializes the track.

% Update M and N for probability of deletion
Nd = Nc - 1; % Need one hit to start counting. Assume first hit initializes track.
Md = Nc - Mc + 1; % Need this many misses to delete

% Bernoulli sum. Probability of deletion calculation.
ii = Md:Nd;
C = arrayfun(@(k) nchoosek(Nd,k),ii);
P = (1 - Pd);
Pdel = sum(C.*P(:).^ii.*(1 - P(:)).^(Nd - ii),2);

% Probability of confirmation
Pcnf = 1 - Pdel;
end

function helperUpdate(calculationType,elapsedTime)
% Output elapsed time
fprintf('%s calculation completed. Total computation time is %.4f seconds.\n', ...
 calculationType,elapsedTime);
end

function varargout = helperPlot(x,y,displayName,xAxisName,yAxisName,titleName,varargin)
% Create a plot with logarithmic scaling on the x-axis

% Create a figure
figure('Name',titleName)
hAxes = gca;

% Plot data
plot(hAxes,x,y,'LineWidth',2,'DisplayName',displayName,varargin{:})
hold(hAxes,'on')
grid(hAxes,'on')

% Update axes
hAxes.Title.String = titleName;
hAxes.XLabel.String = xAxisName;
hAxes.YLabel.String = yAxisName;

% Make sure legend is on and in best location
legend(hAxes,'Location','Best')

% Set axes as optional output
if nargout == 1
 varargout{1} = hAxes;
end
end

function varargout = helperPlotLog(x,y,displayName,xAxisName,yAxisName,titleName,varargin)
% Create a plot with logarithmic scaling on the x-axis

% Create a figure
figure('Name',titleName)
hAxes = gca;

% Plot data
numCol = size(y,2);
for ii = 1:numCol

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-361

 idxX = min(ii,size(x,2));
 hLine = semilogx(hAxes,x(:,idxX),y(:,ii),'LineWidth',2,varargin{:});
 if ischar(displayName)
 hLine.DisplayName = displayName;
 else
 hLine.DisplayName = sprintf('SNR (dB) = %.2f',displayName(ii));
 end
 hold on
end
grid on

% Update axes
hAxes.Title.String = titleName;
hAxes.XLabel.String = xAxisName;
hAxes.YLabel.String = yAxisName;

% Make sure legend is on and in best location
legend(hAxes,'Location','Best')

% Set axes as optional output
if nargout == 1
 varargout{1} = hAxes;
end
end

function helperAddPlotLog(hAxes,x,y,displayName,varargin)
% Add an additional plot to the axes hAxes with logarithmic scaling on the
% x-axis

% Plot data
hold on
hLine = semilogx(hAxes,x,y,'LineWidth',2,varargin{:});
hLine.DisplayName = displayName;
end

function gs = helperCalculateGateSize(N,trkfilt,res)
% Calculate a gate growth sequence in bins

% Initialize tracker gate growth sequence
gs = zeros(1,N); % Gate growth sequence

% Calculate gate growth sequence by projecting state uncertainty using
% linear approximations.
areaBin = prod(res(:),1);
for n = 1:N
 [~,Ppred] = predict(trkfilt); % Predict

 % Calculate the products of the 1-sigma values
 E = eig(Ppred);
 E(E<0) = 0; % Remove negative values
 sigma1Prod = sqrt(prod(E(:),1));

 % Calculate error ellipse area
 areaErrorEllipse = pi*sigma1Prod; % Area of ellipse = pi*a*b

 % Translate to bins
 gs(n) = max(ceil(areaErrorEllipse/areaBin),1);
end

1 Featured Examples

1-362

end

function helperColorZonesReqPfa(hAxes,req)
% Plot color zones for requirement type 1

% Vertical requirement line
xline(req,'--','DisplayName','Requirement',...
 'HitTest','off');

% Get axes limits
xlims = get(hAxes,'XLim');
ylims = get(hAxes,'YLim');

% Green box
pos = [xlims(1) ylims(1) req ylims(2)];
x = [pos(1) pos(1) pos(3) pos(3) pos(1)];
y = [pos(1) pos(4) pos(4) pos(1) pos(1)];
hP = patch(hAxes,x,y,[0.4660 0.6740 0.1880], ...
 'FaceAlpha',0.3,'EdgeColor','none','DisplayName','Requirement Met');
uistack(hP,'bottom');

% Red box
pos = [req ylims(1) xlims(2) ylims(2)];
x = [pos(1) pos(1) pos(3) pos(3) pos(1)];
y = [pos(1) pos(4) pos(4) pos(1) pos(1)];
hP = patch(hAxes,x,y,[0.6350 0.0780 0.1840], ...
 'FaceAlpha',0.3,'EdgeColor','none','DisplayName','Requirement Not Met',...
 'HitTest','off');
uistack(hP,'bottom');
end

function helperColorZonesReqPdt(hAxes,req)
% Plot color zones for requirement type 2

% Horizontal requirement line
yline(req,'--','DisplayName','Requirement',...
 'HitTest','off')

% Get axes limits
xlims = get(hAxes,'XLim');
ylims = get(hAxes,'YLim');

% Green box
pos = [xlims(1) req xlims(2) ylims(2)];
x = [pos(1) pos(1) pos(3) pos(3) pos(1)];
y = [pos(1) pos(4) pos(4) pos(1) pos(1)];
hP = patch(hAxes,x,y,[0.4660 0.6740 0.1880], ...
 'FaceAlpha',0.3,'EdgeColor','none','DisplayName','Requirement Met',...
 'HitTest','off');
uistack(hP,'bottom');

% Red box
pos = [xlims(1) req xlims(2) req];
x = [pos(1) pos(1) pos(3) pos(3) pos(1)];
y = [pos(1) pos(4) pos(4) pos(1) pos(1)];
hP = patch(hAxes,x,y,[0.6350 0.0780 0.1840], ...
 'FaceAlpha',0.3,'EdgeColor','none','DisplayName','Requirement Not Met',...
 'HitTest','off');

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-363

uistack(hP,'bottom');
end

function helperPrintTrackProbabilities(Pdt,Pft,Eft)
% Print out results

fprintf('Probability of Target Track in Presence of False Alarms = %.4f\n',Pdt)
fprintf('Probability of False Track in the Presence of Targets = %.4e\n',Pft)
fprintf('Expected Number of False Tracks = %d\n',Eft)
end

function helperPlotROCTOC(reqPdt,Pfa,Pd,snrdB,PdtMat,cp)
% Plot ROC/TOC

% Plot ROC curves
figure
hAxesROC = subplot(2,1,1);
plot(hAxesROC,snrdB,Pd,'-o')
title(hAxesROC,'Receiver Operating Characteristic (ROC)')
xlabel(hAxesROC,'SNR (dB)')
ylabel(hAxesROC,'P_D')
grid(hAxesROC,'on')
legend(hAxesROC,sprintf('%.1e',Pfa),'Location','Best')

% Plot SNR versus probability of target track
hAxesTOC = subplot(2,1,2);
numCp = size(cp,1);
for ii = 1:numCp
 plot(hAxesTOC,snrdB,PdtMat(:,ii),'-o', ...
 'DisplayName',sprintf('%d/%d',cp(ii,1),cp(ii,2)))
 hold(hAxesTOC,'on')
end
title(hAxesTOC,'SNR versus P_{DT}')
xlabel(hAxesTOC,'SNR (dB)')
ylabel(hAxesTOC,'P_{DT}')
grid(hAxesTOC,'on')
legend(hAxesTOC,'Location','Best')

% Label points
colorVec = get(hAxesROC,'ColorOrder');
numSnr = numel(snrdB);
textArray = arrayfun(@(x) sprintf(' %d',x),1:numSnr,'UniformOutput',false).';
xPosROC = snrdB;
colorFont = brighten(colorVec,-0.75);
numColors = size(colorVec,1);
idxC = mod(1:numCp,numColors); % Use only available default colors
idxC(idxC == 0) = numColors; % Do not let color index equal 0

% Label points ROC
yPosROC = Pd;
text(hAxesROC,xPosROC,yPosROC,textArray,'FontSize',6,'Color',colorFont(1,:),'Clipping','on')

% Label points TOC
xPosTOC = snrdB;
for ii = 1:numCp
 yPosTOC = PdtMat(:,ii);
 text(hAxesTOC,xPosTOC,yPosTOC,textArray,'FontSize',6,'Color',colorFont(idxC(ii),:),'Clipping','on')
end

1 Featured Examples

1-364

% Add requirement zone color blocks
helperColorZonesReqPdt(hAxesTOC,reqPdt);
end

function helperPrintReqValues(reqPdt,Pd,snrdB,PdtMat,EftMat,cp)
% Output information about required values given a required probability of
% target track requirement

% Get values
numCp = size(PdtMat,2);
reqPd = zeros(1,numCp);
reqSNRdB = zeros(1,numCp);
expEft = zeros(1,numCp);
for ii = 1:numCp
 reqPd(ii) = interp1(PdtMat(:,ii),Pd,reqPdt);
 reqSNRdB(ii) = interp1(PdtMat(:,ii),snrdB,reqPdt);
 expEft(ii) = interp1(PdtMat(:,ii),EftMat(:,ii),reqPdt);
end

 % Display required probability of detection, SNR, and expected false
 % tracks
 for ii = 1:numCp
 fprintf('Confirmation Threshold = %d/%d\n',cp(ii,1),cp(ii,2));
 fprintf('Required Probability of Detection = %.2f\n',reqPd(ii));
 fprintf('Required SNR (dB) = %.2f\n',reqSNRdB(ii));
 fprintf('Expected Number of False Tracks = %d\n\n',expEft(ii));
 end
end

 Receiver Operating Characteristic to Tracker Operating Characteristic

1-365

Modeling Radar Detectability Factors
This example shows how to model antenna, transmitter, and receiver gains and losses for a detailed
radar range equation analysis. We start by computing the available signal-to-noise ratio (SNR) at the
radar receiver using the SNR form of the radar equation. Next, the detectability factor is defined as a
threshold SNR required to make a detection with specified probabilities of detection, Pd, and false
alarm, Pf a. The maximum range of the system is then estimated as the range at which the available
SNR is equal to the detectability factor i.e. the maximum range at which the detection with the
specified Pd and Pf a is still possible. The example further explores the impact of losses introduced by
different components of the radar system on the estimated maximum range. We first consider the
effects of the sensitivity time control (STC) and eclipsing on the available SNR. Scanning and signal
processing losses that require an increase in the radar detectability factor are considered next. The
example concludes by computing the resulting Pd at the detector output to demonstrate the impact of
the losses on the detection performance of the radar system.

Available Signal-to-Noise Ratio

The radar equation combines the main parameters of a radar system and allows a radar engineer to
compute a maximum detection range, a required peak transmit power, or a maximum available SNR
for a radar system. The radar equation is typically a family of three relatively simple formulas each
corresponding to one of these key performance characteristics. A common form of the radar equation
for computing the maximum available SNR at a range R is:

SNR =
PtτGtGrλ2σ
(4π)3kTsR4L

where

Pt is the peak transmit power

τ is the transmitted pulse width

Gt is the transmit antenna gain

Gr is the receive antenna gain

λ is the radar wavelength

σ is the radar target cross section (RCS)

k is Boltzmann's constant

Ts is the system noise temperature

L is the general loss factor that combines losses along the transmitter-target-receiver path that
reduce the received signal energy.

On the right-hand side all parameters except the target range and RCS are under control of the radar
designer. This equation states that for a target of a given size located at a range R, the SNR available
at the receiver can be increased by transmitting more power, increasing the antenna size, using lower
frequency, or having a more sensitive receiver.

1 Featured Examples

1-366

Let's consider an S-band airport surveillance radar operating at the frequency of 3 GHz. The peak
transmit power is 0.2 MW, the transmit and receive antenna gain is 34 dB, the pulse duration is 11 μs,
and the noise figure is 4.1 dB. Assume the radar is required to detect a target with 1 m2 RCS at the
maximum range Rm of 100 km.

lambda = freq2wavelen(3e9); % Wavelength (m)
Pt = 0.2e6; % Peak power (W)
tau = 1.1e-5; % Pulse width (s)
G = 34; % Transmit and receive antenna gain (dB)
Ts = systemp(4.1); % System temperature (K)
rcs = 1; % Target radar cross section (m^2)
Rm = 100e3; % Required maximum range (m)

To start, let's assume no losses, i.e. L = 0 dB. We use the radar equation to compute the available
SNR at the receiver as a function of target range

L = 0; % Combined transmission line and propagation losses (dB)
R = (1:40:130e3).'; % Range samples (m)
SNR = radareqsnr(lambda,R,Pt,tau,'Gain',G,'Ts',Ts,'RCS',rcs,'Loss',L);

At the required maximum range of 100 km the available SNR is

SNRatRm = SNR(find(R>=Rm,1))

SNRatRm = 18.3169

Computed available SNR and the maximum range requirement can be plotted together

radarmetricplot(R*1e-3,SNR,'MetricName','Available SNR','MaxRangeRequirement',Rm*1e-3,'RangeUnit','km','MetricUnit','dB');
legend('Location','best');

 Modeling Radar Detectability Factors

1-367

The calculation and the plot show that for a target with 1 m2 RCS at the range of 100 km, the
available SNR at the receiver is approximately 18.32 dB.

Required Signal-to-Noise Ratio

Is the available SNR of 18.32 dB enough to make a detection? Since the signal processed by a radar
receiver is a combination of the transmitted waveform and the random noise, the answer to this
question depends on the desired probability of detection, Pd, and the maximum acceptable probability
of false alarm, Pf a. These probabilities define the required SNR, also known as the detectability factor
(or detectability). The detectability factor is the minimum SNR required to declare a detection with
the specified probabilities of detection and false alarm. It also depends on the RCS fluctuation and
the type of the detector. Assuming Pd = 0.9 and Pf a = 1e-6, the detectability factor for a single pulse
received from a steady (Swerling 0) target by a square-law detector is

Pd = 0.9;
Pfa = 1e-6;
D0 = detectability(Pd,Pfa,1,'Swerling0')

D0 = 13.1217

while for a Swerling 1 fluctuating target, which is a more accurate model for real-world targets, the
single-pulse detectability factor is significantly higher

D1 = detectability(Pd,Pfa,1,'Swerling1')

D1 = 21.1436

1 Featured Examples

1-368

The resultant required SNR of 21.14 dB is higher than the available SNR of 18.32 dB, which means
that a Swerling 1 target will not be detected with a single pulse. A common way to lower the
detectability factor is to perform pulse integration. For N = 10 noncoherently integrated pulses the
detectability factor is

N = 10;
DN = detectability(Pd,Pfa,N,'Swerling1')

DN = 13.5033

which is lower than the available SNR. Thus, after a non-coherent integration of 10 pulses the radar
system will be able to detect a 1 m2 target at the required maximum range of 100 km with the
probability of detection 0.9 and a false alarm of 1e-6.

The detectability factor computed for a Swerling 1 target and N pulses combines the effects of the
integration gain and the fluctuation loss. The integration gain is a difference between the SNR
required to detect a steady target using a single pulse and the SNR required to detect a steady target
using N pulses

Gi = detectability(Pd,Pfa,1,'Swerling0') - detectability(Pd,Pfa,N,'Swerling0')

Gi = 7.7881

The fluctuation loss is a difference between the SNR required to detect a fluctuating target and the
SNR required to detect a steady target

Lf = detectability(Pd,Pfa,N,'Swerling1') - detectability(Pd,Pfa,N,'Swerling0')

Lf = 8.1696

A waterfall chart can be used to illustrate the components of the detectability factor

helperDetectabilityWaterfallPlot([D0 -Gi Lf], {'Single-pulse steady target','Pulse integration gain','Fluctuation loss'});

 Modeling Radar Detectability Factors

1-369

Once the detectability factor has been computed, it can be substituted into the range form of the
radar equation as the minimum required SNR to evaluate the actual maximum range of the system

radareqrng(lambda,DN,Pt,tau,'Gain',G,'Ts',Ts,'RCS',rcs,'Loss',L,'unitstr','km')

ans = 131.9308

To clearly indicate at which ranges the detection with the specified desired Pd and the maximum
acceptable Pf a is possible, we add the computed detectability factor as a horizontal line to the SNR vs
Range plot. We also use a stoplight chart to color code ranges and SNR levels according to the
computed detectability. At the ranges where the available SNR curve passes through the green zone
the radar meets the detection requirement, while at the range where it is in the red zone the
detection with the specified Pd and Pf a is not possible.

radarmetricplot(R*1e-3,SNR,DN, ...
 'MetricName','Available SNR', ...
 'RequirementName','Detectability', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km','MetricUnit','dB', ...
 'ShowStoplight',true);
title([{'Available SNR vs Range'}, {'(No Losses)'}]);
legend('Location','best');

1 Featured Examples

1-370

Notice that all ranges beyond the required maximum range are colored green and marked as Pass.

The above analysis assumes zero losses and therefore cannot adequately predict the range of the
actual radar system. A real radar system with the specified parameters will have a shorter maximum
range due to

• Propagation effects caused by the earth's surface and atmosphere. These effects reduce the
amount of available signal energy at the receiver.

• Various losses experienced throughout the radar system. Some losses in this category reduce the
available SNR, while other losses result in increased detectability factor.

The following sections consider in more details the impact of the losses that belong to the second
category on the range performance of the radar system.

Range-dependent Factors

When designing a surveillance radar system, several factors must be included in the radar equation
to account for the decrease in the available signal energy at the receiver.

Eclipsing

Pulse radar systems turn off their receivers during the pulse transmission. Thus, the target echoes
arriving from the ranges within one pulse length from the radar or within one pulse length around
the unambiguous range will be eclipsed by the transmitted pulse resulting in only a fraction of the
pulse being received and processed. The radar system considered in this example has a pulse width
of 11μs. The closest range from which a full pulse can be received is the minimum range Rmin

 Modeling Radar Detectability Factors

1-371

Rmin = time2range(tau)

Rmin = 1.6489e+03

The echoes from the targets that are closer than 1649 m will arrive before the pulse transmission has
been completed. Similar effect happens to the targets located at or near the multiples of the
unambiguous range. Assuming the pulse repetition frequency is 1350 Hz (pulse repetition interval
T ≈0.75 ms), the unambiguous range of the system is

prf = 1350; % Pulse repetition frequency
Rua = time2range(1/prf)

Rua = 1.1103e+05

The echoes arriving from the ranges Rua ± Rminwill be eclipsed by the next transmitted pulse. The
diagram below illustrates pulse eclipsing. The arrowheads indicate the front of the pulse.

1 Featured Examples

1-372

 Modeling Radar Detectability Factors

1-373

Due to eclipsing, the available SNR will have deep notches at 0 range and the ranges equal to the
multiples of Rua. The eclipsing factor must be added to the radar equation in order to account for the
loss in the available SNR due to pulse eclipsing

Du = tau*prf; % Duty cycle
Fecl = eclipsingfactor(R,Du,prf); % Eclipsing factor

SNR = radareqsnr(lambda,R,Pt,tau,'Gain',G,'Ts',Ts,'RCS',rcs,'CustomFactor',Fecl,'Loss', L);

radarmetricplot(R*1e-3,SNR,DN, ...
 'MetricName','Available SNR', ...
 'RequirementName','Detectability', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km','MetricUnit','dB', ...
 'ShowStoplight',true);
title([{'Available SNR vs Range'}, {'(With Eclipsing)'}]);
legend('Location','best');

The real-world radar systems utilize PRF diversity in order to prevent the eclipsing loss and to extend
the unambiguous range of the system.

Sensitivity Time Control (STC)

A typical surveillance radar system must transmit a considerable amount of power to detect targets
at long ranges. Although the available energy rapidly decays with range, at very close ranges even
small targets can have very strong returns due to high peak transmit power. Such strong returns from
small nuisance targets (birds, insects) might result in undesirable detections while the regular size

1 Featured Examples

1-374

targets or nearby clutter can saturate the receiver. It is highly desirable for the surveillance radar
system to avoid these kind of nuisance detections. To solve this problem the radar systems use STC. It
scales the receiver gain up to a cut-off range Rstc to maintain a constant signal strength as a target
approaches the radar.

Rstc = 60e3; % STC cut-off range (m)
Xstc = 4; % STC exponent selected to maintain target detectability at ranges below Rstc (since the signal power is inversely proportional to R^4)
Fstc = stcfactor(R,Rstc,Xstc); % STC factor

SNR = radareqsnr(lambda,R,Pt,tau,'Gain',G,'Ts',Ts,'RCS',rcs,'CustomFactor',Fecl+Fstc,'Loss',L);

radarmetricplot(R*1e-3,SNR,DN, ...
 'MetricName','Available SNR', ...
 'RequirementName','Detectability', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km','MetricUnit','dB', ...
 'ShowStoplight',true);
title([{'Available SNR vs Range'}, {'(With STC and Eclipsing for 1 m^2 Target)'}]);
legend('Location','best');
ylim([-30 30])

After adding the STC factor, the plot shows that the 1 m2 RCS target is still detected everywhere up
to the maximum range Rm, while a small target with RCS of 0.03 m2 will not be able to reach the
required Pd of 0.9 at any range and thus will be rejected

SNRsmallRCS = radareqsnr(lambda,R,Pt,tau,'Gain',G,'Ts',Ts,'RCS',0.03,'CustomFactor',Fecl+Fstc,'Loss',L);

 Modeling Radar Detectability Factors

1-375

radarmetricplot(R*1e-3,SNRsmallRCS,DN, ...
 'MetricName','Available SNR', ...
 'RequirementName','Detectability', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km','MetricUnit','dB', ...
 'ShowStoplight',true);
title([{'Available SNR vs Range'}, {'(With STC and Eclipsing for 0.03 m^2 Target)'}]);
legend('Location','best');
ylim([-30 20])

From the above plots it is clear that the STC only scales the available SNR up to the specified cut-off
range and does not affect the available SNR at the maximum range of interest.

Scanning

A radar system can scan a search volume either by mechanically rotating the antenna or by using the
phased array antenna and performing electronic scanning. An imperfect shape of the antenna beam
and the process of sweeping the beam across a search volume introduces additional losses to the
system.

Beam Shape Loss

The radar equation uses a peak value of the antenna gain assuming each received pulse has the
maximum amplitude. In reality, as the beam passes the target, the received pulses are modulated by
the two-way pattern of the scanning antenna resulting in beam shape loss. Computing the exact value
of this loss would require knowing the exact antenna pattern. This information might not be available
at the early stages of the radar system design when this type of analysis is usually performed.

1 Featured Examples

1-376

Instead, the shape of the main lobe of a typical practical antenna can be well approximated by a
Gaussian shape. Assuming that the radar system performs dense sampling in the spatial domain (i.e.
the beam moves by less than 0.71 of the half power beamwidth), the beam shape loss for one
dimensional scanning is

Lb = beamloss

Lb = 1.2338

and it is doubled if the radar system scans in both azimuth and elevation

beamloss(true)

ans = 2.4677

Scan Sector Loss

In this example we assume the radar system employs an electronically steered phased array to
perform scanning. Using the phased array antenna will cause an increase in the required SNR due to
two effects: 1) beam broadening due to the reduced projected array area in the beam direction, and
2) reduction of the effective aperture area of the individual array elements at off-broadside angles. To
account for these effects the scan sector loss must be added to the detectability factor. Let's assume
that the system in the example scans only in the azimuth dimension and the scan sector spans from
-60 to 60 degrees, the resultant loss is

theta = [-60 60];
Larray = arrayscanloss(Pd,Pfa,N,theta,'Swerling1')

Larray = 2.7745

Signal Processing

Prior to detection the received radar echoes must pass through the radar signal processing chain.
The purpose of different components in the signal processing chain is to guarantee the required
probabilities of detection and false alarm, reject unwanted echoes from clutter, and account for
variable or non-Gaussian noise. We further consider several components of the signal processing loss
that must be accounted for in a surveillance radar system.

MTI

Moving target indicator (MTI) is a process of rejecting fixed or slowly moving clutter while passing
echoes from targets moving with significant velocities. Typical MTI uses 2, 3, or 4-pulse canceller
that implements a high-pass filter to reject echoes with low Doppler shifts. Passing the received
signal through the MTI pulse canceller introduces correlation between the noise samples. This in turn
reduces the total number of independent noise samples available for integration resulting in MTI
noise correlation loss. Additionally, the MTI canceller significantly suppresses targets with velocities
close to the nulls of its frequency response causing an additional MTI velocity response loss.
Assuming a 2-pulse canceller is used, these two components of the MTI loss are

m = 2;
[Lmti_a, Lmti_b] = mtiloss(Pd,Pfa,N,m,'Swerling1')

Lmti_a = 1.4468

Lmti_b = 8.1562

 Modeling Radar Detectability Factors

1-377

In a system that uses a single PRF, the MTI velocity response loss can be very high for the high
required probability of detection. To eliminate this loss, PRF diversity is almost always used in real
radar systems.

Binary Integration

Binary integration is a suboptimal noncoherent integration technique also known as the M-of-N
integration. If M out of N received pulses exceed a predetermined threshold, a target is declared to
be present. The binary integrator is a relatively simple automatic detector and is less sensitive to the
effects of a single large interference pulse that might exist along with the target echoes. Therefore,
the binary integrator is more robust when the background noise or clutter is non-Gaussian. Since the
binary integration is a suboptimal technique it results in a binary integration loss compared to
optimal noncoherent integration. The optimal value of M is not a sensitive selection and it can be
quite different from the optimum without significant penalty resulting in the binary integration loss
being lower than 1.4 dB. When N is 10 and M is set to 6, the binary integration loss is

M = 6;
Lbint = binaryintloss(Pd,Pfa,N,M)

Lbint = 1.0549

The binaryintloss function computes the loss assuming a steady (Swerling 0) target. Since the
fluctuation loss is included in the detectability factor, the same binary integration loss computation
can be used in the case of a fluctuating target.

CFAR

Constant false alarm rate (CFAR) detector is used to maintain an approximately constant rate of false
target detections when the noise or the interference levels vary. Since CFAR averages a finite number
of reference cells to estimate the noise level, the estimates are subject to an error which leads to a
CFAR loss. CFAR loss is an increase in the SNR required to achieve a desired detection performance
using CFAR when the noise levels are unknown compared to a fixed threshold with a known noise
level. Assuming 120 total cells are used for cell-averaging CFAR, the CFAR loss is

Nrc = 120;
Lcfar = cfarloss(Pfa,Nrc)

Lcfar = 0.2500

Effective Detectability Factor

The scanning and the signal processing losses increase the detectability factor which means that
more energy is required to make a detection. The resulting detectability factor that includes effects of
all these losses is called the effective detectability factor. The waterfall chart shows the combined
effect of the computed scanning and signal processing losses on the detectability factor

D = [D0 -Gi Lf Lmti_a+Lmti_b Lbint Lcfar Larray Lb];
helperDetectabilityWaterfallPlot(D, {'Single-pulse steady target','Pulse integration gain','Fluctuation loss'...
 'MTI loss', 'Binary integration loss', 'CFAR loss', 'Scan sector loss', 'Beam shape loss'});

1 Featured Examples

1-378

The resulting effective detectability factor equals 28.42 dB. By taking the scanning and the signal
processing losses into account, the required SNR increases by almost 15 dB. The analysis shows that
the system cannot actually meet the stated requirement of detecting a 1 m2 RCS target at 100 km
with Pd = 0.9 and Pf a = 1e-6.

radarmetricplot(R*1e-3,SNR,sum(D), ...
 'MetricName', ...
 'Available SNR', ...
 'RequirementName','Detectability', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km','MetricUnit','dB', ...
 'ShowStoplight',true);
title([{'Available SNR vs Range'}, {'(With STC, Eclipsing, Scanning and Signal Processing Losses)'}])
legend('Location','best')
ylim([-10 30]);

 Modeling Radar Detectability Factors

1-379

This problem can be addressed either by increasing the available SNR or decreasing the required
SNR. Transmitting more power or increasing the antenna gains brings up the available SNR, while
increasing the integration time lowers the required SNR. However, in some applications, a subset of
the system parameters can be constrained by other requirements and thus cannot be changed. For
example, if the analysis is performed for an existing system, increasing the available SNR might not
be an option. In that case, making adjustments to the signal processing chain to lower the
detectability factor could be an acceptable solution. To lower the required SNR, in the following
sections we assume that the number of pulses, N, is increased from 10 to 40.

In addition, we can change the requirements on the maximum range and the detection probabilities.
Instead of a single number specifying the desired probability of detection or the maximum range, a
pair of Objective and Threshold values can be defined. The Objective requirement describes
the desired performance level of the system that would be needed to fully satisfy the mission needs.
The Threshold requirement describes a minimum acceptable performance level of the system.
Using a pair of values to define a requirement instead of a single value provides more flexibility to the
design and creates a trade-space for selecting the system parameters. In this example we assume
that the Objective requirement for Pd is 0.9 and set the Threshold value to 0.8. Similarly, the
Objective maximum range requirement remains 100 km, while the Threshold value is set to 90
km. The detectability factor is now computed both for the Objective and the Threshold Pd.

N = 40;
M = 18;
Pd = [0.9 0.8];

[Lmti_a, Lmti_b] = mtiloss(Pd,Pfa,N,m,'Swerling1');

1 Featured Examples

1-380

Dx = detectability(Pd,Pfa,N,'Swerling1') + cfarloss(Pfa,Nrc) + beamloss ...
 + Lmti_a + Lmti_b + binaryintloss(Pd,Pfa,N,M) + arrayscanloss(Pd,Pfa,N,theta,'Swerling1')

Dx = 2×1

 24.2522
 18.0494

Rm = [100e3 90e3];
radarmetricplot(R*1e-3,SNR,Dx(1),Dx(2), ...
 'MetricName', ...
 'Available SNR', ...
 'RequirementName','Detectability', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km','MetricUnit','dB', ...
 'ShowStoplight',true);
title([{'Available SNR vs Range'}, {'(N=40)'}])
legend('Location','best')
ylim([-10 30]);

The SNR vs Range plot now has a yellow Warn zone indicating the SNR values and target ranges
where system's performance would be between the Objective and the Threshold requirements.
We can see that up to approximately 70 km the system meets the Objective requirement for Pd.
From 70 km to 100 km the Objective requirement for Pd is violated while the Threshold
requirement is still satisfied.

 Modeling Radar Detectability Factors

1-381

Effective Probability of Detection

The SNR vs Range plot above shows that the radar system's detection performance varies with range.
A 1 m2 target at ranges below 70 km will be detected with the probability of detection greater or
equal to 0.9, while between 70 km and 100 km it will be detected with Pd of at least 0.8. Since some
of the considered losses depend on the probability of detection, the actual Pd at the detector output
varies with range. We can use the ROC curve to compute Pd as a function of range

% Generate a vector of probability values at which to compute the ROC curve
p = probgrid(0.1,0.9999,100);

% Compute the required SNR at these probabilities
[lmti_a, lmti_b] = mtiloss(p,Pfa,N,m,'Swerling1');
dx = detectability(p,Pfa,N,'Swerling1') + cfarloss(Pfa,Nrc) + beamloss ...
 + lmti_a + lmti_b + binaryintloss(p,Pfa,N,M) + arrayscanloss(p,Pfa,N,theta,'Swerling1');

% Plot the ROC curve
helperRadarPdVsSNRPlot(dx,p,[0.1 0.9999]);

The effective probability of detection at the detector output can now be computed by interpolating
this ROC curve at the available SNR values

% Interpolate the ROC curve at the available SNR
Pdeff = rocinterp(dx,p,SNR,'snr-pd');

% Plot the effective Pd as a function of range
radarmetricplot(R*1e-3,Pdeff,Pd(1),Pd(2), ...

1 Featured Examples

1-382

 'MetricName','Effective P_d', ...
 'RequirementName','P_d', ...
 'MaxRangeRequirement',Rm*1e-3, ...
 'RangeUnit','km', ...
 'ShowStoplight',true);
legend('Location','best')
ylim([0.5 1.0])

This result shows that due to application of the STC the probability of detection is almost constant for
ranges from 2 km to 60 km. For a target with 1 m2 RCS it is higher than 0.92. In the range between
70 km and 87 km the effective Pd is above 0.85. At the Threshold value of the maximum range
requirement the probability of detection is approximately 0.84, and at the Objective range of 100
km it is slightly above 0.8.

Summary

This example demonstrates how various losses impact the detection performance of a radar system. It
starts with a radar equation and introduces the concepts of the available SNR and the detectability
factor. For an example surveillance radar system it shows how the available SNR is reduced by STC
and eclipsing, while the detectability factor is increased by scanning and signal processing losses.
Finally, the example demonstrates how to compute the effective probability of detection at the
receiver output for different target ranges.

 Modeling Radar Detectability Factors

1-383

MTI Improvement Factor for a Land-Based Radar System
This example discusses the moving target indication (MTI) improvement factor and investigates the
effects of the following on MTI performance:

• Frequency
• Pulse repetition frequency (PRF)
• Number of pulses
• Coherent versus noncoherent processing

This example also introduces sources of error that limit MTI cancelation. Lastly, the example
demonstrates the improvement in clutter-to-noise ratio (CNR) for a land-based, MTI radar system.

MTI Improvement Factor

At a high-level, there are two types of moving target indication (MTI) processing, coherent and
noncoherent. Coherent MTI refers to the case in which the transmitter is coherent over the number
of pulses used in the MTI canceler or when the system receiver's coherent oscillator is locked to the
transmitter pulse, which is also known as a coherent-on-receive system. A noncoherent MTI system
uses samples of the clutter to establish a reference phase against which the target and clutter are
detected.

The MTI improvement factor Im is defined as

Im =
Ci
Co

,

where Ciis the clutter power into the receiver and Cois the clutter power after MTI processing.

Effect of Frequency

Investigate the effect of frequency on MTI performance using the mtifactor function. Use a pulse
repetition frequency (PRF) of 500 Hz and analyze for 1- through 3-delay MTI cancelers for both the
coherent and noncoherent cases.

% Setup parameters
m = 2:4; % Number of pulses in (m-1) delay canceler
freq = linspace(1e9,10e9,1000); % Frequency (Hz)
prf = 500; % Pulse repetition frequency (Hz)

% Initialize outputs
numM = numel(m);
numFreq = numel(freq);
ImCoherent = zeros(numFreq,numM);
ImNoncoherent = zeros(numFreq,numM);

% Calculate MTI improvement factor versus frequency
for im = 1:numM
 % Coherent MTI
 ImCoherent(:,im) = mtifactor(m(im),freq,prf,'IsCoherent',true);

 % Noncoherent MTI
 ImNoncoherent(:,im) = mtifactor(m(im),freq,prf,'IsCoherent',false);
end

1 Featured Examples

1-384

% Plot results
helperPlotLogMTI(m,freq,ImCoherent,ImNoncoherent);

There are several takeaways from the results. First, the difference between the coherent and
noncoherent results decreases with increasing frequency for the same m for the m = 3 and 4 cases.
The results for the m = 2 case show that the improvement factor is very similar at lower frequencies
but performance diverges at higher frequencies. Second, increasing m improves the clutter
cancelation for both coherent and noncoherent MTI. Third, when the PRF is held constant, the MTI
improvement factor decreases with increasing frequency. Lastly, for m = 3 and 4, the coherent
performance is better than the noncoherent performance.

Effect of PRF

Next, consider the effect of PRF on the performance of the MTI filter. Calculate results for an L-band
frequency at 1.5 GHz.

% Set parameters
m = 2:4; % Number of pulses in (m-1) delay canceler
freq = 1.5e9; % Frequency (Hz)
prf = linspace(100,1000,1000); % Pulse repetition frequency (Hz)

% Calculate MTI improvement factor versus PRF
for im = 1:numM
 ImCoherent(:,im) = mtifactor(m(im),freq,prf,'IsCoherent',true);
 ImNoncoherent(:,im) = mtifactor(m(im),freq,prf,'IsCoherent',false);
end

 MTI Improvement Factor for a Land-Based Radar System

1-385

% Plot results
helperPlotMTI(m,prf,ImCoherent,ImNoncoherent,'Pulse Repetition Frequency (Hz)','PRF versus MTI Improvement');

When frequency is held constant, there are several results to note. First, the difference between the
coherent and noncoherent improvement factors increase for increasing frequency for the same m for
the m = 3 and 4 cases. The results for the m = 2 case show that the improvement factor is very
similar over the majority of PRFs investigated. Second, the MTI performance improves with
increasing PRF. Lastly, for m = 3 and 4, the coherent performance is better than the noncoherent
performance.

Combined Effects of Frequency and PRF

Next consider the combined effects of frequency and PRF on the MTI improvement factor. This will
allow a system analyst to get a better sense of the entire analysis space. Perform the calculation for a
coherent MTI system using a 3-delay canceler.

% Set parameters
m = 4; % Number of pulses in (m-1) delay canceler
freq = linspace(1e9,10e9,100); % Frequency (Hz)
prf = linspace(100,1000,100); % Pulse repetition frequency (Hz)

% Initialize
numFreq = numel(freq);
numPRF = numel(prf);
ImCoherentMatrix = zeros(numPRF,numFreq);

1 Featured Examples

1-386

% Calculate coherent MTI improvement factor over a range of PRFs and
% frequencies
for ip = 1:numPRF
 ImCoherentMatrix(ip,:) = mtifactor(m,freq,prf(ip),'IsCoherent',true);
end

% Plot results
helpPlotMTImatrix(m,freq,prf,ImCoherentMatrix);

Note that the same behaviors as previously noted are demonstrated here.

• MTI performance improves with increasing PRF
• MTI performance decreases with increasing frequency

MTI Performance Limitations

MTI processing is based on a requirement of target and clutter stationarity within a receive window.
When successive returns are received and subtracted from one another, clutter is cancelled. Any
effect, whether internal or external to the radar, that inhibits stationarity within the receive window
will result in imperfect cancelation.

A wide variety of effects can decrease the performance of the MTI cancellation. Examples include but
are not limited to:

• Transmitter frequency instabilities
• Pulse repetition interval (PRI) jitter

 MTI Improvement Factor for a Land-Based Radar System

1-387

• Pulse width jitter
• Quantization noise
• Uncompensated motion either in the radar platform or the clutter

The next two sections will discuss the effects of null velocity errors and clutter spectrum spread.

Null Velocity Errors

MTI performance declines when the clutter velocity is not centered on the null velocity. The effect of
these null velocity errors results in a decreased MTI improvement factor since more clutter energy
exists outside of the MTI filter null.

Consider the case of a radar operating in an environment with rain. Rain clutter has a non-zero
average Doppler as the clutter approaches or recedes from the radar system. Unless the motion of
the rain clutter is detected and compensated, the cancellation of the MTI filtering will be worse.

In this example, assume a null velocity centered at 0 Doppler. Investigate the effects on the
improvement factor given clutter velocities over the range of -20 to 20 m/s for the coherent MTI
processing case.

% Setup parameters
m = 2:4; % Number of pulses in (m-1) delay canceler
clutterVels = linspace(-20,20,100); % MTI null velocity (m/s)
nullVel = 0; % True clutter velocity (m/s)
freq = 1.5e9; % Frequency (Hz)
prf = 500; % Pulse repetition frequency (Hz)

% Initialize
numM = numel(m);
numVels = numel(clutterVels);
ImCoherent = zeros(numVels,numM);
ImNoncoherent = nan(numVels,numM);

% Compute MTI improvement factor
for im = 1:numM
 for iv = 1:numVels
 ImCoherent(iv,im) = mtifactor(m(im),freq,prf,'IsCoherent',true,'ClutterVelocity',clutterVels(iv),'NullVelocity',nullVel);
 end
end

% Plot results
nullError = (clutterVels - nullVel).';
helperPlotMTI(m,nullError,ImCoherent,ImNoncoherent,'Null Error (m/s)','MTI Improvement with Null Velocity Errors');

1 Featured Examples

1-388

The coherent MTI experiences a rapid decrease in the improvement as the null error increases. The
rate at which the improvement suffers increases with increasing number of pulses in the (m-1) delay
canceler. In the case where m = 4, only a slight offset of 1.1 m/s results in a loss in the improvement
factor of 3 dB.

Clutter Spread

A wider clutter spread results in more clutter energy outside of an MTI filter null and thus results in
less clutter cancelation. While clutter spread is due in part to the inherent motion of the clutter
scatterers, other sources of clutter spread can be due to

• Phase jitter due to sampling
• Phase drift, which can be due to instability in coherent local oscillators
• Uncompensated radar platform motion

Consider the effect of the clutter spread on the MTI improvement factor.

% Setup parameters
m = 2:4; % Number of pulses in (m-1) delay canceler
sigmav = linspace(0.1,10,100); % Standard Deviation of Clutter Spread (m/s)
freq = 1.5e9; % Frequency (Hz)
prf = 500; % Pulse repetition frequency (Hz)

% Calculate MTI improvement
numSigma = numel(sigmav);
for im = 1:numM

 MTI Improvement Factor for a Land-Based Radar System

1-389

 for is = 1:numSigma
 ImCoherent(is,im) = mtifactor(m(im),freq,prf,'IsCoherent',true,'ClutterStandardDeviation',sigmav(is));
 ImNoncoherent(is,im) = mtifactor(m(im),freq,prf,'IsCoherent',false,'ClutterStandardDeviation',sigmav(is));
 end
end

% Plot results
helperPlotMTI(m,sigmav,ImCoherent,ImNoncoherent,'Standard Deviation of Clutter Spread (m/s)','MTI Improvement versus Clutter Spread');

As can be seen from the figure, the standard deviation of the clutter spread is a great limiting factor
of the MTI improvement factor regardless of whether the MTI is coherent or noncoherent. As the
standard deviation of the clutter spread increases, the MTI improvement factor decreases
significantly until the improvement falls below 5 dB for all values of m in both coherent and non-
coherent cases.

Clutter Analysis for a Land-Based, MTI Radar

Consider a land-based MTI radar system. Calculate the clutter-to-noise ratio with and without MTI
processing.

First setup the radar and MTI processing parameters.

% Radar properties
freq = 1.5e9; % L-band frequency (Hz)
anht = 15; % Height (m)
ppow = 100e3; % Peak power (W)
tau = 1.5e-6; % Pulse width (sec)

1 Featured Examples

1-390

prf = 500; % PRF (Hz)
Gtxrx = 45; % Tx/Rx gain (dB)
Ts = 450; % Noise figure (dB)
Ntx = 20; % Number of transmitted pulses

% MTI settings
nullVel = 0; % Null velocity (m/s)
m = 4; % Number of pulses in the (m-1) delay canceler
N = Ntx - m; % Number of coherently integrated pulses

Consider a wooded hills operating environment with a clutter spread of 1 m/s and a mean clutter
velocity of 0 m/s. Calculate and plot the land surface reflectivity for the grazing angles of the defined
geometry. Use the landroughness and landreflectivity functions for the physical surface
properties and reflectivity calculation, respectively.

% Clutter properties
sigmav = 1; % Standard Deviation of Clutter Spread (m/s)
clutterVel = 0; % Clutter velocity (m/s)
landType = 'Wooded Hills';

% Get the surface standard deviation of height (m), surface slope (deg),
% and vegetation type
[surfht,beta0,vegType] = landroughness(landType);

% Calculate maximum range for simulation
Rua = time2range(1/prf); % Maximum unambiguous range (m)
Rhoriz = horizonrange(anht,'SurfaceHeight',surfht); % Horizon range (m)
RhorizKm = Rhoriz.*1e-3; % Horizon range (km)
Rmax = min(Rua,Rhoriz); % Maximum range (m)

% Generate vector of ranges for simulation
Rm = linspace(100,Rmax,1000); % Range (m)
Rkm = Rm*1e-3; % Range (km)

% Calculate land clutter reflectivity
grazAng = grazingang(anht,Rm,'TargetHeight',surfht);
nrcs = landreflectivity(landType,grazAng,freq);
nrcsdB = pow2db(nrcs);
helperPlot(grazAng,nrcsdB,'NRCS','NRCS (dB)','Reflectivity \sigma_0 (dB)','Land Reflectivity \sigma_0');

 MTI Improvement Factor for a Land-Based Radar System

1-391

Next, calculate the radar cross section (RCS) of the clutter using the clutterSurfaceRCS function.
Note the drop in the clutter RCS as the radar horizon range is reached.

% Calculate azimuth and elevation beamwidth
azbw = sqrt(32400 / db2pow(Gtxrx));
elbw = azbw;

% Calculate clutter RCS
rcs = clutterSurfaceRCS(nrcs,Rm,azbw,elbw,grazAng(:),tau);

% Plot clutter RCS including horizon line
rcsdB = pow2db(rcs); % Convert to decibels for plotting
hAxes = helperPlot(Rkm,rcsdB,'RCS','Range (km)','Clutter RCS (dBsm)','Clutter Radar Cross Section (RCS)');
helperAddHorizLine(hAxes,RhorizKm);

1 Featured Examples

1-392

Since the propagation path deviates from free space, include the clutter propagation factor and
atmospheric losses in the calculation.

The default permittivity calculation underlying the radarpropfactor function is a sea water model.
In order to more accurately simulate the propagation path over land, calculate the permittivity for the
vegetation using the earthSurfacePermittivity function.

% Calculate land surface permittivity for vegetation
temp = 20; % Ambient temperature (C)
wc = 0.5; % Gravimetric water contnt
epsc = earthSurfacePermittivity('vegetation',freq,temp,wc);

Calculate the clutter propagation factor using the radarpropfactor function. Include the
vegetation type in the calculation. At higher frequencies, the presence of vegetation can cause
additional losses.

% Calculate clutter propagation factor
Fc = radarpropfactor(Rm,freq,anht,surfht, ...
 'SurfaceHeightStandardDeviation',surfht, ...
 'SurfaceSlope',beta0, ...
 'VegetationType',vegType, ...
 'SurfaceRelativePermittivity',epsc, ...
 'ElevationBeamwidth',elbw);
helperPlot(Rkm,Fc,'Clutter Propagation Factor','Range (km)', ...
 'Propagation Factor (dB)', ...
 'One-Way Clutter Propagation Factor F_C');

 MTI Improvement Factor for a Land-Based Radar System

1-393

Next, calculate the atmospheric losses in this simulation. Assume the default standard atmosphere.
Perform the calculation using the tropopl function.

% Calculate the atmospheric loss due to water and oxygen attenuation
elAng = height2el(surfht,anht,Rm); % Elevation angle (deg)
numEl = numel(elAng);
Latmos = zeros(numEl,1);
Llens = zeros(numEl,1);
for ie = 1:numEl
 Latmos(ie,:) = tropopl(Rm(ie),freq,anht,elAng(ie));
end
hAxes = helperPlot(Rkm,Latmos,'Atmospheric Loss','Range (km)','Loss (dB)','One-Way Atmospheric Losses');
ylim(hAxes,[0 0.1]);

1 Featured Examples

1-394

Calculate the CNR using the radareqsnr function and plot results with and without MTI. Again,
note the drop in CNR as the simulation range approaches the radar horizon.

% Calculate CNR
lambda = freq2wavelen(freq);
cnr = radareqsnr(lambda,Rm(:),ppow,tau, ...
 'gain',Gtxrx,'rcs',rcs,'Ts',Ts, ...
 'PropagationFactor',Fc, ...
 'AtmosphericLoss',Latmos);
coherentGain = pow2db(N);
cnr = cnr + coherentGain;
hAxes = helperPlot(Rkm,cnr,'CNR','Range (km)','CNR (dB)','CNR Clutter-to-Noise Ratio');
helperAddHorizLine(hAxes,RhorizKm);

% Calculate CNR with MTI
Im = mtifactor(m,freq,prf,'IsCoherent',true,...
 'ClutterVelocity',clutterVel, ...
 'ClutterStandardDeviation',sigmav, ...
 'NullVelocity',nullVel)

Im = 55.3986

cnrMTI = cnr - Im;
helperAddPlot(Rkm,cnrMTI,'CNR + MTI',hAxes);

Lastly, calculate the MTI improvement factor assuming a null error exists due to the true clutter
velocity being 3 m/s while the null velocity remains centered at 0 m/s.

 MTI Improvement Factor for a Land-Based Radar System

1-395

% Calculate CNR with null velocity error
trueClutterVel = 3; % Clutter velocity (m/s)
nullError = trueClutterVel - nullVel; % Null error (m/s)
ImNullError = mtifactor(m,freq,prf,'IsCoherent',true,...
 'ClutterVelocity',trueClutterVel, ...
 'ClutterStandardDeviation',sigmav, ...
 'NullVelocity',nullVel)

ImNullError = 33.6499

cnrMTINullError = cnr - ImNullError;
helperAddPlot(Rkm,cnrMTINullError, ...
 sprintf('CNR + MTI with %.1f (m/s) Null Error',nullError), ...
 hAxes);

ImLoss = Im - ImNullError

ImLoss = 21.7488

Note the dramatic decrease in the CNR due to the MTI processing. When the null velocity is set to
the clutter velocity, the improvement is 55 dB. When there is an uncompensated motion, the
cancelation decreases to 34 dB. This is a loss of 21 dB of cancelation. This demonstrates the need to
properly compensate for motion or to steer the null to the appropriate velocity.

1 Featured Examples

1-396

Summary

This example discusses the moving target indication (MTI) improvement factor and investigates a
multitude of effects on MTI performance. Using the mtifactor function, we saw that MTI
performance:

• Improves with increasing PRF
• Decreases with increasing frequency
• Improves with increasing the number of pulses in the (m - 1)-delay canceler

Additionally we saw that the performance of coherent MTI is generally better than noncoherent MTI.

Lastly, we investigated limitations of MTI performance within the context of a land-based MTI radar
system, demonstrating the need to properly compensate for unexpected clutter velocities.

References

1 Barton, David K. Radar Equations for Modern Radar. 1st edition. Norwood, MA: Artech House,
2013.

2 Richards, M. A., Jim Scheer, and William A. Holm. Principles of Modern Radar. Raleigh, NC:
SciTech Pub., 2010.

function helperPlotLogMTI(m,freq,ImCoherent,ImNonCoherent)
% Used for the MTI plots that have a logarithmic x axis

hFig = figure;
hAxes = axes(hFig);
lineStyles = {'-','--','-.'};
numM = numel(m);
for im = 1:numM
 semilogx(hAxes,freq.*1e-9,ImCoherent(:,im),'LineWidth',1.5, ...
 'LineStyle',lineStyles{im}, 'Color',[0 0.4470 0.7410], ...
 'DisplayName',sprintf('Coherent, m = %d',m(im)))
 hold(hAxes,'on')
 semilogx(hAxes,freq.*1e-9,ImNonCoherent(:,im),'LineWidth',1.5, ...
 'LineStyle',lineStyles{im}, 'Color',[0.8500 0.3250 0.0980], ...
 'DisplayName',sprintf('Noncoherent, m = %d',m(im)))
end
grid(hAxes,'on');
xlabel(hAxes,'Frequency (GHz)')
ylabel(hAxes,'MTI Improvement Factor (dB)')
title('Frequency versus MTI Improvement')
legend(hAxes,'Location','Best')
end

function helperPlotMTI(m,x,ImCoherent,ImNonCoherent,xLabelStr,titleName)
% Used for the MTI plots that have an x-axis in linear units

hFig = figure;
hAxes = axes(hFig);
lineStyles = {'-','--','-.'};
numM = numel(m);
for im = 1:numM
 plot(hAxes,x,ImCoherent(:,im),'LineWidth',1.5, ...
 'LineStyle',lineStyles{im}, 'Color',[0 0.4470 0.7410], ...
 'DisplayName',sprintf('Coherent, m = %d',m(im)))

 MTI Improvement Factor for a Land-Based Radar System

1-397

 hold(hAxes,'on')
 if any(~isnan(ImNonCoherent)) % Don't plot if NaN
 plot(hAxes,x,ImNonCoherent(:,im),'LineWidth',1.5, ...
 'LineStyle',lineStyles{im}, 'Color',[0.8500 0.3250 0.0980], ...
 'DisplayName',sprintf('Noncoherent, m = %d',m(im)))
 end
end
grid(hAxes,'on');
xlabel(hAxes,xLabelStr)
ylabel(hAxes,'MTI Improvement Factor (dB)')
title(titleName)
legend(hAxes,'Location','Best')
end

function helpPlotMTImatrix(m,freq,prf,ImMat)
% Creates image of MTI improvement factor with Frequency on the x-axis and
% PRF on the y-axis

hFig = figure;
hAxes = axes(hFig);
hP = pcolor(hAxes,freq.*1e-9,prf,ImMat);
hP.EdgeColor = 'none';
xlabel(hAxes,'Frequency (GHz)')
ylabel(hAxes,'PRF (Hz)')
title(sprintf('Coherent MTI Improvement, m = %d',m))
hC = colorbar;
hC.Label.String = '(dB)';
end

function varargout = helperPlot(x,y,displayName,xlabelStr,ylabelStr,titleName)
% Used for CNR analysis

% Create new figure
hFig = figure;
hAxes = axes(hFig);

% Plot
plot(hAxes,x,y,'LineWidth',1.5,'DisplayName',displayName);
grid(hAxes,'on');
hold(hAxes,'on');
xlabel(hAxes,xlabelStr)
ylabel(hAxes,ylabelStr);
title(hAxes,titleName);
ylims = get(hAxes,'Ylim');
set(hAxes,'Ylim',[-100 ylims(2)]);

% Add legend
legend(hAxes,'Location','Best')

% Output axes
if nargout ~= 0
 varargout{1} = hAxes;
end
end

function helperAddPlot(x,y,displayName,hAxes)
% Add additional CNR plots

1 Featured Examples

1-398

plot(hAxes,x,y,'LineWidth',1.5,'DisplayName',displayName);
end

function helperAddHorizLine(hAxes,val)
% Add vertical line indicating horizon range

xline(hAxes,val,'--','DisplayName','Horizon Range','LineWidth',1.5);
end

 MTI Improvement Factor for a Land-Based Radar System

1-399

Radar Link Budget Analysis
This example shows how to use the Radar Designer app to perform radar link budget analysis and
design a radar system based on a set of performance requirements. Radar Designer allows a user to
design a new radar system starting from one of five preset radar types, set the performance
requirements, compute radar metrics, configure the environment, and compare several alternative
designs. You can also export the design as a MATLAB® script for further analysis.

Introduction

The radar range equation is a powerful tool that ties together the main parameters of a radar system.
It can give a radar engineer a good idea about performance of the system without resorting to
complex analysis and simulations. The radar equation is especially useful at early stages of the design
when specific information about various components (e.g. transmitted waveform, size or shape of the
antenna array, signal processing algorithms, etc.) might not yet be available. Although the radar
equation provides only approximate results, the fidelity of the analysis can be significantly improved
by considering losses introduced by the components of the radar system and the signal propagation
medium. The Radar Designer app is a tool for performing the radar equation analysis also known as
the radar link budget analysis. It provides a user with many tunable parameters for the radar system,
the target, and the environment, and offers a set of visualizations to aid with a choice of these
parameters. The Radar Designer app also allows to design a radar system based on a set of
performance requirements.

This example shows how to use the Radar Designer app to design an X-band surveillance radar for
detecting small targets. The design is based on the following requirements specification:

• The peak transmit power should not exceed 2000 W
• The radar should provide 360-degree coverage in azimuth and 60 degrees coverage in elevation
• The radar should detect small manned aircraft with the radar cross section of 1 m2 at ranges from

300 m to 18 km
• The radar should detect small unmanned aircraft (UAS) with the radar cross section of 0.03 m2 at

ranges from 300 m to 8 km
• The probability of detection and false alarm should be 0.9 and 1e-6 respectively
• The radar should resolve two targets with the same azimuth and elevation separated in range by

30 m
• The radar should have range, azimuth, and elevation accuracies of 2 m, 0.2 deg, and 0.5 deg

respectively
• The radar should detect targets with velocities up to 180 km/h
• The radar should maintain its accuracy and detection performance in heavy rain (16 mm/hr)

conditions

New Session

The Radar Designer app can be launched by using the command:

radarDesigner

By default, the application allows a user to either start a new or open an existing session using the
corresponding buttons in the toolstrip. A new session offers a choice of one of the five predefined
radar types: airborne, airport, automotive, tracking, and weather. In this example we use the default
airport radar as a starting point.

1 Featured Examples

1-400

Once a new session is loaded, the Radar Designer app presents a user the following document
groups:

• Radar, Target, and Environment panels on the left
• SNR vs. Range and Scenario Geometry plots in the center and right
• Metrics and Requirements table at the bottom

As a first step after opening a new session, we change the name of the current design at the top of
the Radar panel to NewDesign.

Metrics and Requirements

In this example we have a specification detailing the performance of the final system. However, it
does not specify all the design parameters needed to achieve the required levels of performance.
Most of the design parameters must be derived from the requirements given in the specification. The
Radar Designer app provides a way to derive the radar design parameters from the performance
requirements.

The performance metrics and the corresponding requirements are housed in the Metrics and
Requirements table. For each performance metric the app has two requirement values:

• Threshold - describes the minimum performance level for the metric;
• Objective - defines the value of the metric that will enable the new system to fully satisfy

mission needs.

The values between Threshold and Objective constitute the trade-space that can be used by a
radar engineer to balance multiple, sometimes conflicting, performance requirements.

 Radar Link Budget Analysis

1-401

The computed metrics, which are shown in the Metrics and Requirements table, can be constraint
by either the maximum range or the probability of detection. A choice of which variable to use as a
constraint is made through the Metric button in the Metric section of the toolstrip. Selecting
maximum range as a constraint means that the performance metrics displayed in the Metrics and
Requirements table are computed at the specified maximum range. Selecting the probability of
detection as a constraint means that the displayed metrics are computed assuming the specified
value of the probability of detection. In this example we are interested in two ranges: 1) 18 km for
manned aircraft, and 2) 8 km for UAS. We start with the manned aircraft and set the Metric in the
toolstrip to the maximum range constraint of 18 km.

As the next step we populate the Threshold and Objective values of the Metric and
Requirements table with the numbers given in the specification. In this example the specification
provides only a single value for each performance metric. We use this value to set the Objective
requirement. We then set the corresponding Threshold to a reasonable value close to the
Objective. Although the desired performance of the system is defined by the Objective
requirement, the system is considered to have an acceptable performance if the Threshold
requirement is met. This flexibility is needed to create the trade-space for selecting the design
parameters, which otherwise could be difficult or impossible to choose. Since, the specification does
not provide requirements for all the metrics shown in the table, we leave the requirements for these
metrics set to the default values.

1 Featured Examples

1-402

Target Parameters

The target parameters are set in the Target panel. Since we are considering the small manned
aircraft first, we set the target's radar cross section to 1 m2. The Swerling Model is changed to
Swerling 1 to model more realistic fluctuating targets.

Radar Parameters

After the requirements and the target parameters have been set, we can start adjusting the radar
design parameters such that the computed metrics meet the stated requirements. The Radar
Designer app provides a convenient way to monitor the status of the computed metrics while
changing the value of the design parameters. The entries of the Metrics and Requirements table
are color coded to indicate the status of the computed metrics. Metrics that meet the corresponding
Objective requirement are colored in green, metrics with the values between the Threshold and
Objective are colored in yellow, and the metrics that do not meet the Threshold requirement are
colored in red. The same colors are also used in the SNR vs Range and Pd vs Range plot to show the
ranges at which the detection requirements are satisfied.

To guarantee that the 1 m2 RCS target is detected at the desired range of 18 km, we adjust the radar
design parameters to make sure that the SNR curve on the SNR vs. Range plot is above the
Objective Detectability line at Max Range.

 Radar Link Budget Analysis

1-403

The radar design parameters are divided into four sections. Each section is adjusted as follows:

• Main. The radar operating frequency and the peak power are set to the values given in the
specification. The pulse bandwidth is adjusted to meet the range resolution requirements and the
pulse width is set to achieve high enough available SNR at the maximum range. The 7 kHz PRF
value is selected to find a trade-off between the 21.4 km unambiguous range and the maximum
unambiguous velocity of 198 km/h (the first blind speed of 396 km/h). The Range/Doppler
Coverage plot, accessed through the Range/Doppler Coverage button in the Analysis section of
the toolstrip, is used to visualize the trade space between the target's velocity and range.

1 Featured Examples

1-404

• Antenna and Scanning. Antenna height, tilt, and polarization are left unchanged. The azimuth
and elevation antenna beamwidth are set to 2 and 6 degrees respectively to meet the azimuth and
elevation accuracy requirements. The Scan Mode is set to Mechanical to facilitate 360-degree
coverage in azimuth, and the scan sector elevation dimension is set to 60 degrees as given in this
specification. The Antenna and Scanning section also shows that the size of the search volume is
5.441 steradians and the time it takes to scan this volume is 6.38 seconds. Including scanning in
the analysis adds the beam shape loss and the beam-dwell factor to the link budget.

• Detection and Tracking. The probability of false alarm is set to the required value of 1e-6.
The number of coherently integrated pulses is selected such that the Objective
Detectability value that determines the SNR required to detect a Swerling 1 case target with
the desired probabilities of detection and false alarm of 0.9 and 1e-6 respectively, is below the
available SNR at the specified maximum range constraint of 18 km.

 Radar Link Budget Analysis

1-405

• Loss Factors. To account for losses due to pulse eclipsing we add the statistical eclipsing loss to
the link budget analysis.

After these adjustments, the Metric and Requirements table shows that this design satisfies the
specification for small manned aircraft with RCS of 1 m2 or larger. From the SNR vs. Range plot we
can see that the detectability factor required to achieve the Objective detection probability of 0.9 is
approximately 10 dB, while the detectability factor for the Threshold requirement of 0.75 is close to
5 dB. Since the available SNR curve is above the Objective Detectability line at 18 km, the
resulting probability of detection is higher than the required Objective value and equals to 0.91.
The Metrics and Requirements table also displays that the minimum detectable signal required to
detect a 1 m2 target with this probability of detection is -92 dBm.

1 Featured Examples

1-406

Environment Parameters

Until now this example assumed free space propagation without any atmospheric attenuation. To
make the analysis more accurate, losses due to propagation and atmospheric attenuation can be
included and parametrized through the Environment panel.

The specification states that the radar under design must maintain the required detection
performance and the measurement accuracy in heavy rain (16 mm/hr). To include the path loss due to
precipitation in the analysis, we set Precipitation Type to Rain in the Precipitation section
of the Environment panel. We then choose ITU model and set the precipitation ranges such that 16
mm/hr rain is present in all ranges of interest. Now the Metrics and Requirements table and the
SNR vs Range plot show that the probability of detection at the maximum range is much lower than
the required 0.9.

The Environmental Losses plot gives a better idea about the contribution of the precipitation
loss to the overall loss budget. It is accessed through the Environmental Losses button in Analysis
section. This plot visualizes four types of range-dependent losses due to propagation and atmospheric
attenuation. The Precipitation Loss subplot shows that 16 mm/hr rain creates an additional loss
of 4.8 dB at 18 km. This results in the probability of detection dropping from 0.91 to 0.55 which is
below the Threshold requirement. Thus, the system's performance becomes unacceptable in heavy
rain conditions and does not meet the specification.

M-of-N CPI Integration

The probability of detection can be improved by either increasing the SNR available at the receiver or
by decreasing the SNR required to make a detection (the detectability factor). The latter approach
might be more attractive in practice since decreasing the detectability factor can be accomplished
through application of signal processing techniques that do not require making changes in the

 Radar Link Budget Analysis

1-407

hardware. The detectability factor can be decreased by integrating more pulses. However, target RCS
fluctuation usually imposes a limit on the amount of pulses that can be coherently integrated. A
possible solution to integrating more pulses while addressing the problem of the RCS fluctuation is
the M-of-N integration over multiple coherent processing intervals (CPIs). Within each CPI the pulses
are integrated coherently, and then the M-of-N integration is applied across CPIs. Navigating to the
Radar panel and setting the number of CPIs in the Detection and Tracking section to 3 and the
number of CPIs with a detection to 2 increases the resulting probability of detection from 0.55 to
0.81.

Although the probability of detection is still below the specified Objective value, it meets the
Threshold requirement. This means that the system has an acceptable detection performance in
heavy rain. Similarly the range, azimuth, and elevation accuracies clear the Threshold requirement
but are below their respective Objective values.

Open this design in Radar Designer.

radarDesigner(SurveillanceRadarSmallTargets)

1 Featured Examples

1-408

Small UAS

To verify whether this radar design will have a satisfactory performance when the target is a small
UAS, we change the target RCS to 0.03 m2 and set the metric constraint to maximum range of 8 km.
The SNR vs. Range plot shows that the available SNR for this design is above the Objective
Detectability line at 8 km, and the resulting probability of detection at that range is 0.94, which is
well above the required value. The system is able to satisfy the Objective requirement for the
probability of detection at 8 km because the impact of the atmospheric attenuation is smaller at
closer ranges.

The resulting range and the elevation accuracies, however, are still below the Objective and above
the Threshold requirements

 Radar Link Budget Analysis

1-409

.

Export

The Radar Designer allows to export the created design as a MATLAB scrip by clicking the Export
button in the Export section of the toolstrip and selecting Export SNR vs Range MATLAB Script.
The exported script contains the selected radar, target, and environment parameters, and reproduces
the SNR vs Range plot. It can be used to further experiment, enhance, and modify the design. In
addition, the results shown in the Metrics and Requirements table can also be exported as a
separate MATLAB script by clicking Export and then choosing Generate Metrics Report. When
executed, this script outputs a formatted report for the computed metrics.

Summary

This example shows how to use the Radar Designer app to perform a link budget analysis of a
surveillance radar system for detecting small targets. The example starts with a specification and a
set of performance requirements. It shows how to set the Objective and Threshold requirements
based on the values provided in the specification. Then it demonstrates how to adjust the radar
design parameters with the help of the SNR vs Range plot and the stoplight color coding such that
the design meets the stated requirements. The example also shows how to change the target
parameters to model manned and unmanned aircraft, and how to configure the environment settings
to include the atmospheric loss due to precipitation into the analysis.

1 Featured Examples

1-410

Planning Radar Network Coverage over Terrain
This example shows how to plan a radar network using propagation modelling over terrain. DTED
level-1 terrain data is imported for a region that contains five candidate monostatic radar sites. The
radar equation is used to determine whether target locations can be detected, where additional path
loss is calculated using either the Longley-Rice propagation model or Terrain Integrated Rough Earth
Model™ (TIREM™). The best three sites are selected for detection of a target that is flying at 500
meters above ground level. The scenario is updated to model a target that is flying at 250 meters
above ground level. Radar coverage maps are shown for both scenarios.

Import Terrain Data

Import DTED-format terrain data for a region around Boulder, Colorado, US. The terrain file was
downloaded from the "SRTM Void Filled" data set available from the United States Geological Survey
(USGS). The file is DTED level-1 format and has a sampling resolution of about 90 meters. A single
DTED file defines a region that spans 1 degree in both latitude and longitude.

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available from the U.S. Geological Survey.";
addCustomTerrain("southboulder",dtedfile, ...
 "Attribution",attribution)

Open Site Viewer using the imported terrain. Visualization with high-resolution satellite map imagery
requires an Internet connection.

viewer = siteviewer("Terrain","southboulder");

Show Candidate Radar Sites

The region contains mountains to the west and flatter areas to the east. Radars will be placed in the
flat area to detect targets over the mountainous region. Define five candidate locations for placing the
radars and show them on the map. The candidate locations are chosen to correspond to local high
points on the map outside of residential areas.

Create collocated transmitter and receiver sites at each location to model monostatic radars, where
the radar antennas are assumed to be 10 meters above ground level.

names = "Radar site" + (1:5);
rdrlats = [39.6055 39.6481 39.7015 39.7469 39.8856];
rdrlons = [-105.1602 -105.1378 -105.1772 -105.2000 -105.2181];

% Create transmitter sites associated with radars
rdrtxs = txsite("Name",names, ...
 "AntennaHeight",10, ...
 "Latitude",rdrlats, ...
 "Longitude",rdrlons);

% Create receiver sites associated with radars
rdrrxs = rxsite("Name",names, ...
 "AntennaHeight",10, ...
 "Latitude",rdrlats, ...
 "Longitude",rdrlons);

% Show just the radar transmitter sites
show(rdrtxs);

 Planning Radar Network Coverage over Terrain

1-411

Zoom and rotate the map to view the 3-D terrain around the candidate radar sites. Select a site to
view the location, antenna height, and ground elevation.

1 Featured Examples

1-412

Design Monostatic Radar System

Design a basic monostatic pulse radar system to detect non-fluctuating targets with 0.1 square meter
radar cross section (RCS) at a distance up to 35000 meters from the radar with a range resolution of
5 meters. The desired performance index is a probability of detection (Pd) of 0.9 and probability of
false alarm (Pfa) below 1e-6. The radars are assumed to be rotatable and support the same antenna
gain in all directions, where the antenna gain corresponds to a highly directional antenna array.

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
maxrange = 35000; % Maximum unambiguous range (m)
rangeres = 5; % Required range resolution (m)
tgtrcs = .1; % Required target radar cross section (m^2)

Use pulse integration to reduce the required SNR at the radar receiver. Use 10 pulses and compute
the SNR required to detect a target.

 Planning Radar Network Coverage over Terrain

1-413

numpulses = 10;
snrthreshold = albersheim(pd, pfa, numpulses); % Unit: dB
disp(snrthreshold);

 4.9904

Define radar center frequency and antenna gain, assuming a highly directional antenna array.

fc = 10e9; % Transmitter frequency: 10 GHz
antgain = 38; % Antenna gain: 38 dB
c = physconst('LightSpeed');
lambda = c/fc;

Calculate the required peak pulse power (Watts) of the radar transmitter using the radar equation.

pulsebw = c/(2*rangeres);
pulsewidth = 1/pulsebw;
Ptx = radareqpow(lambda,maxrange,snrthreshold,pulsewidth,...
 'RCS',tgtrcs,'Gain',antgain);
disp(Ptx)

 3.1521e+05

Define Target Positions

Define a grid containing 2500 locations to represent the geographic range of positions for a moving
target in the region of interest. The region of interest spans 0.5 degrees in both latitude and
longitude and includes mountains to the west as well as some of the area around the radar sites. The
goal is to detect targets that are in the mountainous region to the west.

% Define region of interest
latlims = [39.5 40];
lonlims = [-105.6 -105.1];

% Define grid of target locations in region of interest
tgtlatv = linspace(latlims(1),latlims(2),50);
tgtlonv = linspace(lonlims(1),lonlims(2),50);
[tgtlons,tgtlats] = meshgrid(tgtlonv,tgtlatv);
tgtlons = tgtlons(:);
tgtlats = tgtlats(:);

Compute the minimum, maximum, and mean ground elevation for the target locations.

% Create temporary array of sites corresponding to target locations and query terrain
Z = elevation(txsite("Latitude",tgtlats,"Longitude",tgtlons));
[Zmin, Zmax] = bounds(Z);
Zmean = mean(Z);

disp("Ground elevation (meters): Min Max Mean" + newline + ...
 " " + round(Zmin) + " " + round(Zmax) + " " + round(Zmean))

Ground elevation (meters): Min Max Mean
 1257 3953 2373

Target altitude can be defined with reference to mean sea level or to ground level. Use ground level
as the reference and define a target altitude of 500 meters.

% Target altitude above ground level (m)
tgtalt = 500;

1 Featured Examples

1-414

Show the region of interest as a solid green area on the map.

viewer.Name = "Radar Coverage Region of Interest";
regionData = propagationData(tgtlats,tgtlons,'Area',ones(size(tgtlats)));
contour(regionData,'ShowLegend',false,'Colors','green','Levels',0)

Calculate SNR for Target Positions with Terrain

The radar equation includes free space path loss and has a parameter for additional losses. Use a
terrain propagation model to predict the additional path loss over terrain. Use Terrain Integrated
Rough Earth Model™ (TIREM™) from Alion Science if it is available, or else use the Longley-Rice
(aka ITM) model. TIREM™ supports frequencies up to 1000 GHz, whereas Longley-Rice is valid up to
20 GHz. Compute total additional loss including propagation from the radar to the target and then
back from the target to the receiver.

% Create a terrain propagation model, using TIREM or Longley-Rice
tiremloc = tiremSetup;
if ~isempty(tiremloc)
 pm = propagationModel('tirem');

 Planning Radar Network Coverage over Terrain

1-415

else
 pm = propagationModel('longley-rice');
end

% Compute additional path loss due to terrain and return distances between radars and targets
[L, ds] = helperPathlossOverTerrain(pm, rdrtxs, rdrrxs, tgtlats, tgtlons, tgtalt);

Use the radar equation to compute the SNR at each radar receiver for the signal reflected from each
target.

% Compute SNR for all radars and targets
numtgts = numel(tgtlats);
numrdrs = numel(rdrtxs);
rawsnr = zeros(numtgts,numrdrs);
for tgtind = 1:numtgts
 for rdrind = 1:numrdrs
 rawsnr(tgtind,rdrind) = radareqsnr(lambda,ds(tgtind,rdrind),Ptx,pulsewidth, ...
 'Gain',antgain,'RCS',tgtrcs,'Loss',L(tgtind,rdrind));
 end
end

Optimize Radar Coverage

A target is detected if the radar receiver SNR exceeds the SNR threshold computed above. Consider
all combinations of radar sites and select the three sites that produce the highest number of
detections. Compute the SNR data as the best SNR available at the receiver of any of the selected
radar sites.

bestsitenums = helperOptimizeRadarSites(rawsnr, snrthreshold);
snr = max(rawsnr(:,bestsitenums),[],2);

Display radar coverage showing the area where the SNR meets the required threshold to detect a
target. The three radar sites selected for best coverage are shown using red markers.

The coverage map shows straight edges on the north, east, and south sides corresponding to the
limits of the region of interest. The coverage map assumes that the radars can rotate and produce the
same antenna gain in all directions and that the radars can transmit and receive simultaneously so
that there is no minimum coverage range.

The coverage map has jagged portions on the western edge where the coverage areas are limited by
terrain effects. A smooth portion of the western edge appears where the coverage is limited by the
design range of the radar system, which is 35000 meters.

% Show selected radar sites using red markers
viewer.Name = "Radar Coverage";
clearMap(viewer)
show(rdrtxs(bestsitenums))

% Plot radar coverage
rdrData = propagationData(tgtlats,tgtlons,"SNR",snr);
legendTitle = "SNR" + newline + "(dB)";
contour(rdrData, ...
 "Levels",snrthreshold, ...
 "Colors","green", ...
 "LegendTitle",legendTitle)

1 Featured Examples

1-416

Vary the Number of Pulses to Integrate

The analysis above optimized radar transmitter power and site locations based on a system that
integrates 10 pulses. Now investigate the impact on radar coverage for different modes of operation
of the system, where the number of pulses to integrate is varied. Compute the SNR thresholds
required to detect a target for varying number of pulses.

% Calculate SNR thresholds corresponding to different number of pulses
numpulses = 1:10;
snrthresholds = zeros(1,numel(numpulses));
for k = 1:numel(numpulses)
 snrthresholds(k) = albersheim(pd, pfa, numpulses(k));
end

% Plot SNR thresholds vs number of pulses to integrate
plot(numpulses,snrthresholds,'-*')
title("SNR at Radar Receiver Required for Detection")
xlabel("Number of pulses to integrate")

 Planning Radar Network Coverage over Terrain

1-417

ylabel("SNR (dB)")
grid on;

Show radar coverage map for SNR thresholds corresponding to a few different numbers of pulses to
integrate. Increasing the number of pulses to integrate decreases the required SNR and therefore
produces a larger coverage region.

% Show best sites
viewer.Name = "Radar Coverage for Multiple SNR Thresholds";
show(rdrtxs(bestsitenums))

colors = jet(4);
colors(4,:) = [0 1 0];
contour(rdrData, ...
 "Levels",snrthresholds([1 2 5 10]), ...
 "Colors",colors, ...
 "LegendTitle",legendTitle)

1 Featured Examples

1-418

Update Target Altitude

Update the scenario so that target positions are 250 meters above ground level instead of 500 meters
above ground level. Rerun the same analysis as above to select the three best radar sites and
visualize coverage. The new coverage map shows that reducing the visibility of the targets also
decreases the coverage area.

% Target altitude above ground (m)
tgtalt = 250;
[L, ds] = helperPathlossOverTerrain(pm, rdrtxs, rdrrxs, tgtlats, tgtlons, tgtalt);

% Compute SNR for all radars and targets
numrdrs = numel(rdrtxs);
rawsnr = zeros(numtgts,numrdrs);
for tgtind = 1:numtgts
 for rdrind = 1:numrdrs
 rawsnr(tgtind,rdrind) = radareqsnr(lambda,ds(tgtind,rdrind),Ptx,pulsewidth, ...
 'Gain',antgain,'RCS',tgtrcs,'Loss',L(tgtind,rdrind));
 end

 Planning Radar Network Coverage over Terrain

1-419

end

% Select best combination of 3 radar sites
bestsitenums = helperOptimizeRadarSites(rawsnr, snrthreshold);
snr = max(rawsnr(:,bestsitenums),[],2);

% Show best sites
viewer.Name = "Radar Coverage";
clearMap(viewer);
show(rdrtxs(bestsitenums))

% Plot radar coverage
rdrData = propagationData(tgtlats,tgtlons,"SNR",snr);
contour(rdrData, ...
 "Levels",snrthreshold, ...
 "Colors","green", ...
 "LegendTitle",legendTitle)

Show radar coverage map for multiple SNR thresholds.

1 Featured Examples

1-420

% Show best sites
viewer.Name = "Radar Coverage for Multiple SNR Thresholds";
show(rdrtxs(bestsitenums))

contour(rdrData, ...
 "Levels",snrthresholds([1 2 5 10]), ...
 "Colors",colors, ...
 "LegendTitle",legendTitle)

Conclusion

A monostatic radar system was designed to detect non-fluctuating targets with 0.1 square meter
radar cross section (RCS) at a distance up to 35000 meters. Radar sites were selected among five
candidate sites to optimize number of detections over a region of interest. Two target altitudes were
considered: 500 meters above ground level, and 250 meters above ground level. The coverage maps
suggest the importance of line-of-sight visibility between the radar and target in order to achieve
detection. The second scenario results in targets that are closer to ground level and therefore more

 Planning Radar Network Coverage over Terrain

1-421

likely to be blocked from line-of-sight visibility with a radar. This can be seen by rotating the map to
view terrain, where non-coverage areas are typically located in shadow regions of the mountains.

Clean up by closing Site Viewer and removing the imported terrain data.

close(viewer)
removeCustomTerrain("southboulder")

1 Featured Examples

1-422

Sea Clutter Simulation for a Maritime Radar System
This example will introduce a sea clutter simulation for a maritime surveillance radar system. This
example will first discuss the physical properties associated with sea states. Next, we will discuss the
reflectivity of sea surfaces, investigating the effect of sea state, frequency, polarization, and grazing
angle. Lastly, we will calculate the clutter-to-noise ratio (CNR) for a maritime surveillance radar
system, considering the propagation path and weather effects.

Overview of Sea States

In describing sea clutter, it is first important to establish the physical properties of the sea surface. In
modeling sea clutter for radar, there are 3 important parameters:

1 σh is the standard deviation of the wave height. The wave height is defined as the vertical
distance between the wave crest and the adjacent wave trough.

2 β0 is the slope of the wave.
3 vw is the wind speed.

Due to the irregularity of waves, the physical properties of the sea are often described in terms of sea
states. The Douglas sea state number is a widely used scale that represents a wide range of physical
sea properties such as wave heights and associated wind velocities. At the lower end of the scale, a
sea state of 0 represents a calm, glassy sea state. The scale then proceeds through states that
represent everything from slightly rippled at 1 to rough seas with high wave heights at sea state 5.
Wave heights at a sea state of 8 can be greater than 9 m or more.

Using the searoughness function, plot the sea properties for sea states 1 through 5. Note the slow
increase in the wave slope β0 with sea state. This is a result of the wavelength and wave height
increasing with wind speed, albeit with different factors.

% Analyze for sea states 1 through 5
ss = 1:5; % Sea states

% Initialize outputs
numSeaStates = numel(ss);
hgtsd = zeros(1,numSeaStates);
beta0 = zeros(1,numSeaStates);
vw= zeros(1,numSeaStates);

% Obtain sea state properties
for is = 1:numSeaStates
 [hgtsd(is),beta0(is),vw(is)] = searoughness(ss(is));
end

% Plot results
helperPlotSeaRoughness(ss,hgtsd,beta0,vw);

 Sea Clutter Simulation for a Maritime Radar System

1-423

The physical properties introduced will be an important part in developing the geometry and
environment of the maritime scenario. Furthermore, as we will see, radar returns from a sea surface
exhibit strong dependence on sea state.

Reflectivity

The sea surface is composed of water with an average salinity of about 35 parts per thousand. The
reflection coefficient of sea water is close to -1 for microwave frequencies and at low grazing angles.

For smooth seas, the wave height is small, and the sea appears as an infinite, flat conductive plate
with little-to-no backscatter. As the sea state number increases and the wave height increases, the
surface roughness increases. This results in increased scattering that is directionally dependent.
Additionally, the reflectivity exhibits a strong proportional dependence on wave height and a
dependence that increases with increasing frequency on wind speed.

Investigate sea surface reflectivity versus frequency for various sea states using the
seareflectivity function. Set the grazing angle equal to 0.5 degrees and consider frequencies
over the range of 500 MHz to 35 GHz.

grazAng = 0.5; % Grazing angle (deg)
freq = linspace(0.5e9,35e9,100); % Frequency (Hz)
pol = 'H'; % Horizontal polarization

% Initialize reflectivity output
numFreq = numel(freq);
nrcsH = zeros(numFreq,numSeaStates);

1 Featured Examples

1-424

% Calculate reflectivity
for is = 1:numSeaStates
 nrcsH(:,is) = seareflectivity(ss(is),grazAng,freq,'Polarization',pol);
end

% Plot reflectivity
helperPlotSeaReflectivity(ss,grazAng,freq,nrcsH,pol);

As can be see from the figure above, the sea surface reflectivity is proportional to frequency.
Additionally, as the sea state number increases, which corresponds to increasing roughness, the
reflectivity also increases.

Polarization Effects

Next consider polarization effects on the sea surface reflectivity. Maintain the same grazing angle and
frequency span previously used.

pol = 'V'; % Vertical polarization

% Initialize reflectivity output
numFreq = numel(freq);
nrcsV = zeros(numFreq,numSeaStates);

% Calculate reflectivity
for is = 1:numSeaStates
 nrcsV(:,is) = seareflectivity(ss(is),grazAng,freq,'Polarization',pol);
end

 Sea Clutter Simulation for a Maritime Radar System

1-425

% Plot reflectivity
hAxes = helperPlotSeaReflectivity(ss,grazAng,freq,nrcsH,'H');
helperPlotSeaReflectivity(ss,grazAng,freq,nrcsV,'V',hAxes);

As can be seen from the figure above, there is a noticeable effect on the reflectivity based on
polarization. Notice that the difference between horizontal and vertical polarizations is greater at
lower frequencies than at higher frequencies. As the sea state number increases, the difference
between horizontal and vertical polarizations decreases. Thus, there is a decreasing dependence on
polarization with increasing frequency.

Grazing Angle Effects

Consider the effect of grazing angle. Compute the sea reflectivity over the range of 0.1 to 60 degrees
at an L-band frequency of 1.5 GHz.

grazAng = linspace(0.1,60,100); % Grazing angle (deg)
freq = 1.5e9; % L band frequency (Hz)

% Initialize reflectivity output
numGrazAng = numel(grazAng);
nrcsH = zeros(numGrazAng,numSeaStates);
nrcsV = zeros(numGrazAng,numSeaStates);

% Calculate reflectivity
for is = 1:numSeaStates
 nrcsH(:,is) = seareflectivity(ss(is),grazAng,freq,'Polarization','H');

1 Featured Examples

1-426

 nrcsV(:,is) = seareflectivity(ss(is),grazAng,freq,'Polarization','V');
end

% Plot reflectivity
hAxes = helperPlotSeaReflectivity(ss,grazAng,freq,nrcsH,'H');
helperPlotSeaReflectivity(ss,grazAng,freq,nrcsV,'V',hAxes);
ylim(hAxes,[-60 -10]);

From the figure, note that there is much more variation in the sea reflectivity at lower grazing angles
and differences exist between vertical and horizontal polarization. The figure shows the dependence
on grazing angle decreases as the grazing angle increases. Furthermore, the reflectivity for
horizontally polarized signals is less than vertically polarized signals for the same sea state over the
range of grazing angles considered.

Maritime Surveillance Radar Example

Calculating Clutter-to-Noise Ratio

Consider a horizontally polarized maritime surveillance radar system operating at 6 GHz (C band).
Define the radar system.

% Radar parameters
freq = 6e9; % C-band frequency (Hz)
anht = 20; % Height (m)
ppow = 200e3; % Peak power (W)
tau = 200e-6; % Pulse width (sec)
prf = 300; % PRF (Hz)

 Sea Clutter Simulation for a Maritime Radar System

1-427

azbw = 10; % Half-power azimuth beamwidth (deg)
elbw = 30; % Half-power elevation beamwidth (deg)
Gt = 22; % Transmit gain (dB)
Gr = 10; % Receive gain (dB)
nf = 3; % Noise figure (dB)
Ts = systemp(nf); % System temperature (K)

Next, simulate an operational environment where the sea state is 2. Calculate and plot the sea
surface reflectivity for the grazing angles of the defined geometry.

% Sea parameters
ss = 2; % Sea state

% Calculate surface state
[hgtsd,beta0] = searoughness(ss);

% Setup geometry
anht = anht + 2*hgtsd; % Average height above clutter (m)
surfht = 3*hgtsd; % Surface height (m)

% Calculate maximum range for simulation
Rua = time2range(1/prf); % Maximum unambiguous range (m)
Rhoriz = horizonrange(anht,'SurfaceHeight',surfht); % Horizon range (m)
Rmax = min(Rua,Rhoriz); % Maximum simulation range (m)

% Generate vector of ranges for simulation
Rm = linspace(100,Rmax,1000); % Range (m)
Rkm = Rm*1e-3; % Range (km)

% Calculate sea clutter reflectivity
grazAng = grazingang(anht,Rm,'TargetHeight',surfht);
nrcs = seareflectivity(ss,grazAng,freq);
helperPlotSeaReflectivity(ss,grazAng,freq,nrcs,'H');

1 Featured Examples

1-428

Next, calculate the radar cross section (RCS) of the clutter using the clutterSurfaceRCS function.
Note the drop in the clutter RCS as the radar horizon range is reached.

% Calculate clutter RCS
rcs = clutterSurfaceRCS(nrcs,Rm,azbw,elbw,grazAng(:),tau);
rcsdB = pow2db(rcs); % Convert to decibels for plotting
hAxes = helperPlot(Rkm,rcsdB,'RCS','Clutter RCS (dBsm)','Clutter Radar Cross Section (RCS)');
helperAddHorizLine(hAxes,Rhoriz);

 Sea Clutter Simulation for a Maritime Radar System

1-429

Calculate the clutter-to-noise ratio (CNR) using the radareqsnr function. Again, note the drop in
CNR as the simulation range approaches the radar horizon. Calculate the range at which the clutter
falls below the noise.

% Convert frequency to wavelength
lambda = freq2wavelen(freq);

% Calculate and plot the clutter-to-noise ratio
cnr = radareqsnr(lambda,Rm(:),ppow,tau,...
 'gain',[Gt Gr],'rcs',rcs,'Ts',Ts); % dB
hAxes = helperPlot(Rkm,cnr,'CNR','CNR (dB)','Clutter-to-Noise Ratio (CNR)');
ylim(hAxes,[-80 100]);
helperAddHorizLine(hAxes,Rhoriz);
helperAddBelowClutterPatch(hAxes);

1 Featured Examples

1-430

% Range when clutter falls below noise
helperFindClutterBelowNoise(Rkm,cnr);

Range at which clutter falls below noise (km) = 18.04

Considering the Propagation Path

When the path between the radar and clutter deviates from free space conditions, it is recommended
to include the clutter propagation factor and the atmospheric losses on the path. The clutter
propagation factor can be calculated using the radarpropfactor function.

% Calculate radar propagation factor for clutter
Fc = radarpropfactor(Rm,freq,anht,surfht, ...
 'SurfaceHeightStandardDeviation',hgtsd,...
 'SurfaceSlope',beta0,...
 'ElevationBeamwidth',elbw);
helperPlot(Rkm,Fc,'Propagation Factor', ...
 'Propagation Factor (dB)', ...
 'One-Way Clutter Propagation Factor F_C');

 Sea Clutter Simulation for a Maritime Radar System

1-431

Within the above plot, 2 propagation regions are visible:

1 Interference region, where reflections interfere with the direct ray. This is exhibited over the
ranges where there is lobing.

2 Intermediate region. This is the region between the interference and diffraction region, a shadow
region beyond the horizon. The intermediate region, which in this example occurs at the kink in
the curve at about 1.5 km, is generally estimated by an interpolation between the interference
and diffraction regions.

Typically the clutter propagation factor and the sea reflectivity are combined as the product σCFC
4 ,

because measurements of surface reflectivity are generally measurements of the product rather than
just the reflectivity σC. Calculate this product and plot the results.

% Combine clutter reflectivity and clutter propagation factor
FcLinear = db2mag(Fc); % Convert to linear units
combinedFactor = nrcs.*FcLinear.^2;
combinedFactordB = pow2db(combinedFactor);
helperPlot(Rkm,combinedFactordB,'\sigma_CF_C', ...
 '\sigma_CF_C (dB)', ...
 'One-Way Sea Clutter Propagation Factor and Reflectivity');

1 Featured Examples

1-432

Next calculate the atmospheric loss on the path using the slant-path tropopl function. Use the
default standard atmospheric model for the calculation.

% Calculate one-way loss associated with rain
elAng = height2el(surfht,anht,Rm); % Elevation angle (deg)
numEl = numel(elAng);
Latmos = zeros(numEl,1);
for ie = 1:numEl
 Latmos(ie,:) = tropopl(Rm(ie),freq,anht,elAng(ie));
end
helperPlot(Rkm,Latmos,'Atmospheric Loss','Loss (dB)','One-Way Atmospheric Loss');

 Sea Clutter Simulation for a Maritime Radar System

1-433

Recalculate the CNR. Include the propagation factor and atmospheric loss in the calculation. Note
the change in the shape of the CNR curve. The point at which the clutter falls below the noise is
much closer in range when these factors are included.

% Re-calculate CNR including radar propagation factor
cnr = radareqsnr(lambda,Rm(:),ppow,tau,...
 'gain',[Gt Gr],'rcs',rcs,'Ts',Ts, ...
 'PropagationFactor',Fc,...
 'AtmosphericLoss',Latmos); % dB
helperAddPlot(Rkm,cnr,'CNR + Propagation Factor + Atmospheric Loss',hAxes);

1 Featured Examples

1-434

% Range when clutter falls below noise
helperFindClutterBelowNoise(Rkm,cnr);

Range at which clutter falls below noise (km) = 10.44

Understanding Weather Effects

Just as weather affects the detection of a target, weather also affects the detection of clutter.
Consider the effect of rain over the simulated ranges. First calculate the rain attenuation.

% Calculate one-way loss associated with rain
rr = 50; % Rain rate (mm/h)
polAng = 0; % Polarization tilt angle (0 degrees for horizontal)
elAng = height2el(surfht,anht,Rm); % Elevation angle (deg)
numEl = numel(elAng);
Lrain = zeros(numEl,1);
for ie = 1:numEl
 Lrain(ie,:) = cranerainpl(Rm(ie),freq,rr,elAng(ie),polAng);
end
helperPlot(Rkm,Lrain,'Rain Loss','Loss (dB)','One-Way Rain Loss');

 Sea Clutter Simulation for a Maritime Radar System

1-435

Recalculate the CNR. Include the propagation path and the rain loss. Note that there is only a slight
decrease in the CNR due to the presence of the rain.

% Re-calculate CNR including radar propagation factor and rain loss
cnr = radareqsnr(lambda,Rm(:),ppow,tau,...
 'gain',[Gt Gr],'rcs',rcs,'Ts',Ts, ...
 'PropagationFactor',Fc, ...
 'AtmosphericLoss',Latmos + Lrain); % dB
helperAddPlot(Rkm,cnr,'CNR + Propagation Factor + Atmospheric Loss + Rain',hAxes);

1 Featured Examples

1-436

% Range when clutter falls below noise
helperFindClutterBelowNoise(Rkm,cnr);

Range at which clutter falls below noise (km) = 9.61

Summary

This example introduced concepts regarding the simulation of sea surfaces. We learned that sea
reflectivity exhibits the following properties:

• A strong dependence on sea state,
• A proportional dependence on frequency,
• A dependence on polarization that decreases with increasing frequency, and
• A strong dependence on grazing angle at low grazing angles

This example also discussed how to use the sea state physical properties and reflectivity for the
calculation of the clutter-to-noise ratio for a maritime surveillance radar system. Additionally, the
example explained ways to improve simulation of the propagation path.

References

1 Barton, David K. Radar Equations for Modern Radar. 1st edition. Norwood, MA: Artech House,
2013.

2 Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval Research
Laboratory Report 7098, 1970.

 Sea Clutter Simulation for a Maritime Radar System

1-437

3 Gregers-Hansen, V. and Mittal, R. "An Improved Empirical Model for Radar Sea Clutter
Reflectivity." NRL/MR/5310-12-9346, Apr. 27, 2012.

4 Richards, M. A., Jim Scheer, and William A. Holm. Principles of Modern Radar. Raleigh, NC:
SciTech Pub., 2010.

function helperPlotSeaRoughness(ss,hgtsd,beta0,vw)
% Creates 3x1 plot of sea roughness outputs

% Create figure
figure

% Plot standard deviation of sea wave height
subplot(3,1,1)
plot(ss,hgtsd,'-o','LineWidth',1.5)
ylabel([sprintf('Wave\nHeight') '\sigma (m)'])
title('Sea Wave Roughness')
grid on;

% Plot sea wave slope
subplot(3,1,2)
plot(ss,beta0,'-o','LineWidth',1.5)
ylabel(sprintf('Wave\nSlope (deg)'))
grid on;

% Plot wind velocity
subplot(3,1,3)
plot(ss,vw,'-o','LineWidth',1.5)
xlabel('Sea State')
ylabel(sprintf('Wind\nVelocity (m/s)'))
grid on;
end

function hAxes = helperPlotSeaReflectivity(ss,grazAng,freq,nrcs,pol,hAxes)
% Plot sea reflectivities

% Create figure and new axes if axes are not passed in
newFigure = false;
if nargin < 6
 figure();
 hAxes = gca;
 newFigure = true;
end

% Get polarization string
switch lower(pol)
 case 'h'
 lineStyle = '-';
 otherwise
 lineStyle = '--';
end

% Plot
if numel(grazAng) == 1
 hLine = semilogx(hAxes,freq(:).*1e-9,pow2db(nrcs),lineStyle,'LineWidth',1.5);
 xlabel('Frequency (GHz)')
else
 hLine = plot(hAxes,grazAng(:),pow2db(nrcs),lineStyle,'LineWidth',1.5);

1 Featured Examples

1-438

 xlabel('Grazing Angle (deg)')
end

% Set display names
numLines = size(nrcs,2);
for ii = 1:numLines
 hLine(ii).DisplayName = sprintf('SS %d, %s',ss(ii),pol);
 if newFigure
 hLine(ii).Color = brighten(hLine(ii).Color,0.5);
 end
end

% Update labels and axes
ylabel('Reflectivity \sigma_0 (dB)')
title('Sea State Reflectivity \sigma_0')
grid on
axis tight
hold on;

% Add legend
legend('Location','southoutside','NumColumns',5,'Orientation','Horizontal');
end

function varargout = helperPlot(Rkm,y,displayName,ylabelStr,titleName)
% Used in CNR analysis

% Create figure
hFig = figure;
hAxes = axes(hFig);

% Plot
plot(hAxes,Rkm,y,'LineWidth',1.5,'DisplayName',displayName);
grid(hAxes,'on');
hold(hAxes,'on');
xlabel(hAxes,'Range (km)')
ylabel(hAxes,ylabelStr);
title(hAxes,titleName);
axis(hAxes,'tight');

% Add legend
legend(hAxes,'Location','Best')

% Output axes
if nargout ~= 0
 varargout{1} = hAxes;
end
end

function helperAddPlot(Rkm,y,displayName,hAxes)
% Used in CNR analysis

% Plot
ylimsIn = get(hAxes,'Ylim');
plot(hAxes,Rkm,y,'LineWidth',1.5,'DisplayName',displayName);
axis(hAxes,'tight');
ylimsNew = get(hAxes,'Ylim');
set(hAxes,'Ylim',[ylimsIn(1) ylimsNew(2)]);
end

 Sea Clutter Simulation for a Maritime Radar System

1-439

function helperAddHorizLine(hAxes,Rhoriz)
% Add vertical line indication horizon range

xline(Rhoriz.*1e-3,'--','DisplayName','Horizon Range','LineWidth',1.5);
xlims = get(hAxes,'XLim');
xlim([xlims(1) Rhoriz.*1e-3*(1.05)]);
end

function helperAddBelowClutterPatch(hAxes)
% Add patch indicating when clutter falls below the noise

xlims = get(hAxes,'Xlim');
ylims = get(hAxes,'Ylim');
x = [xlims(1) xlims(1) xlims(2) xlims(2) xlims(1)];
y = [ylims(1) 0 0 ylims(1) ylims(1)];
hP = patch(hAxes,x,y,[0.8 0.8 0.8], ...
 'FaceAlpha',0.3,'EdgeColor','none','DisplayName','Clutter Below Noise');
uistack(hP,'bottom');
end

function helperFindClutterBelowNoise(Rkm,cnr)
% Find the point at which the clutter falls below the noise
idxNotNegInf = ~isinf(cnr);
Rclutterbelow = interp1(cnr(idxNotNegInf),Rkm(idxNotNegInf),0);
fprintf('Range at which clutter falls below noise (km) = %.2f\n',Rclutterbelow)
end

1 Featured Examples

1-440

Radar Scenario Tutorial
This example shows how to construct and visualize a simple radar scenario programmatically using
the radarScenario, theaterPlot, and radarDataGenerator objects.

Scenario Setup

To begin, create an empty radar scenario. All scenario properties have default values. The scenario
does not contain any platform by default.

scenario = radarScenario

scenario =

 radarScenario with properties:

 IsEarthCentered: 0
 UpdateRate: 10
 SimulationTime: 0
 StopTime: Inf
 SimulationStatus: NotStarted
 Platforms: {}

Adding Platforms

A scenario is comprised of objects, called platforms, upon which you may mount sensors and
emitters. To add a platform, use the platform object function. Here you create a simple tower.

tower = platform(scenario)

tower =

 Platform with properties:

 PlatformID: 1
 ClassID: 0
 Position: [0 0 0]
 Orientation: [0 0 0]
 Dimensions: [1x1 struct]
 Trajectory: [1x1 kinematicTrajectory]
 PoseEstimator: [1x1 insSensor]
 Emitters: {}
 Sensors: {}
 Signatures: {[1x1 rcsSignature]}

Platform Identification

When you first construct a platform, it has a PlatformID, which is a unique identifier you can use to
identify the platform. The scenario assigns platform identifiers in the order that the platforms are
created. You can specify a ClassID to denote the platform's classification. For example, here you use
a 3 to denote a tower.

tower.ClassID = 3;

 Radar Scenario Tutorial

1-441

Platform Signatures

Sensors can detect platforms. For radar sensors, a relevant signature is the radar cross-section
(RCS). By default a uniform RCS signature is used:

tower.Signatures{1}

ans =

 rcsSignature with properties:

 Pattern: [2x2 double]
 Azimuth: [-180 180]
 Elevation: [2x1 double]
 Frequency: [0 1.0000e+20]

Load predefined cylinder RCS data and use the data to define the RCS of the tower platform.

load('RCSCylinderExampleData.mat','cylinder');

tower.Signatures{1} = rcsSignature('Pattern', cylinder.RCSdBsm, ...
 'Azimuth', cylinder.Azimuth, 'Elevation', cylinder.Elevation, ...
 'Frequency', cylinder.Frequency);

Platform Dimensions

By default, platforms have no dimensions and are modeled as point targets. You may optionally
specify the length, width, and height to denote the extent of the object, along with an offset of the
body frame origin from its from its geometric center. You can specify platform dimensions using the
Dimensions property.

You specify the dimensions of the tower like this:

tower.Dimensions = struct(...
 'Length', 10, ...
 'Width', 10, ...
 'Height', 60, ...
 'OriginOffset', [0 0 30]);

The tower has a length, width, and height of 10, 10, and 60 meters. The origin offset of [0 0 30]
indicates that its body frame origin (rotational center) is 30 meters in the positive z-direction of the
platform's local body axis.

Platform Trajectories

You can obtain a platform's current position and orientation through its Position and Orientation
properties. You can obtain more information about platforms using the scenario's platformPoses
method:

scenario.platformPoses

ans =

 struct with fields:

1 Featured Examples

1-442

 PlatformID: 1
 ClassID: 3
 Position: [0 0 0]
 Velocity: [0 0 0]
 Acceleration: [0 0 0]
 Orientation: [1x1 quaternion]
 AngularVelocity: [0 0 0]

You can specify a platform's position and orientation over time using its Trajectory property. You
can specify the trajectory of a platform using a kinematicTrajectory, waypoinTrajectory, or
geoTrajectory object.

By default, a platform consists of a static kineticTrajectory that whose body axis is perfectly
centered and aligned with the scenario axes:

tower.Trajectory

ans =

 kinematicTrajectory with properties:

 SampleRate: 100
 Position: [0 0 0]
 Orientation: [1x1 quaternion]
 Velocity: [0 0 0]
 AccelerationSource: 'Input'
 AngularVelocitySource: 'Input'

To obtain a pitch angle of 4 degrees, you use the Orientation property of the trajectory object.
Specify the orientation using a quaternion obtained from Euler angles.

tYaw = 0;
tPitch = 4;
tRoll = 0;
tower.Trajectory.Orientation = quaternion([tYaw tPitch tRoll],'eulerd','zyx','frame');

Axes Conventions

Most examples in Radar Toolbox, use a "North-East-Down" convention. This means that the x-axis
points towards north, the y-axis points toward east, and the z-axis points downwards. Also, the x-, y-,
and z- directions of the local body frame are the forward, right, and downward directions,
respectively.

Visualizing a Scenario

The theaterPlot object provides an interface to plot objects dynamically in a 3-D scene. You may
use standard MATLAB axes plotting methods to add or remove annotations to the theater plot's axes,
which you can obtain via its Parent property.

Use a platformPlotter to plot platforms.

As expected, the tower is centered at the origin in NED coordinates with a pitch of 4 degrees.

tPlot = theaterPlot('XLim',[-50 50],'YLim',[-50 50],'ZLim',[-100 0]);
pPlotter = platformPlotter(tPlot,'DisplayName','tower');

 Radar Scenario Tutorial

1-443

pose = platformPoses(scenario);
towerPose = pose(1);
towerDims = tower.Dimensions;

plotPlatform(pPlotter, towerPose.Position, towerDims, towerPose.Orientation);
set(tPlot.Parent,'YDir','reverse', 'ZDir','reverse');
view(tPlot.Parent, -37.5, 30)

Adding Sensors to Platforms

To add a radar sensor to the platform, you can add a radarDataGenerator object on the platform
by using its Sensors property.

Keep in mind that in a NED coordinate system, the "Z" direction points down. Therefore, if you want
to mount a radar at the top of the tower, you should set its "z" position to -60 meters.

The radarDataGenerator has the option to report detections in scenario coordinates. Reporting
detections in scenario coordinates makes it easier to compare the generated detections with the
positions of the objects in the scenario.

towerRadar = radarDataGenerator('SensorIndex', 1, ...
 'UpdateRate', 10, ...
 'MountingLocation', [0 0 -60], ...
 'ScanMode', 'No scanning', ...
 'HasINS', true, ...
 'TargetReportFormat', 'Detections', ...

1 Featured Examples

1-444

 'DetectionCoordinates', 'Scenario');

tower.Sensors = towerRadar;

Visualizing Coverage Areas

To see sensor coverages in a scenario, you use a coverage plotter and plot the coverage configuration
of the scenario. You can widen the theater plot's range by adjusting the limits of its internal axes:

tPlot.XLimits = [-5000 5000];
tPlot.YLimits = [-5000 5000];
tPlot.ZLimits = [-1000 0];

covPlotter = coveragePlotter(tPlot,'DisplayName','Sensor Coverage');
plotCoverage(covPlotter, coverageConfig(scenario));

Platform Signatures

You can add other platforms in the scenario and adjust parameters that affect how other sensors
observe the platforms. You can use an rcsSignature to model what the radar mounted on the tower
would see.

The following code creates a helicopter and sets its radar cross section omnidirectionally to a value of
40 dBsm.

helicopter = platform(scenario);
helicopter.Dimensions = struct(...

 Radar Scenario Tutorial

1-445

 'Length',30, ...
 'Width', .1, ...
 'Height', 7, ...
 'OriginOffset',[0 8 -3.2]);

helicopter.Signatures = rcsSignature(...
 'Pattern',[40 40; 40 40], ...
 'Elevation',[-90; 90], ...
 'Azimuth',[-180,180]);

You can mount more than one sensor to any platform by placing the sensors in a cell array before
assigning to the Sensors property.

helicopter.Sensors = { ...
 radarDataGenerator('SensorIndex', 2, ...
 'UpdateRate', 20, ...
 'MountingLocation', [22 0 0], ...
 'MountingAngles', [-5 0 0], ...
 'ScanMode', 'No scanning', ...
 'HasINS', true, ...
 'TargetReportFormat', 'Detections', ...
 'DetectionCoordinates', 'Scenario'), ...
 radarDataGenerator('SensorIndex', 3, ...
 'UpdateRate', 30, ...
 'MountingLocation', [22 0 0], ...
 'MountingAngles', [5 0 0], ...
 'ScanMode', 'No scanning', ...
 'HasINS', true, ...
 'TargetReportFormat', 'Detections', ...
 'DetectionCoordinates', 'Scenario')};

Platform Motion and Animation

You can arrange for the helicopter to cross the path of the radar beam. This shows how to make the
helicopter follow a straight 100-meter path at a constant velocity with an elevation of 250 meters for
seven seconds:

helicopter.Trajectory = waypointTrajectory([2000 50 -250; 2000 -50 -250],[0 7]);

Platform motion across time is performed by using a while-loop and calling the scenario's advance
method.

You can plot all the platforms positions, orientations and dimensions in the loop:

profiles = platformProfiles(scenario);
dimensions = vertcat(profiles.Dimensions);

while advance(scenario)
 poses = platformPoses(scenario);
 positions = vertcat(poses.Position);
 orientations = vertcat(poses.Orientation);
 plotPlatform(pPlotter, positions, dimensions, orientations);
 plotCoverage(covPlotter, coverageConfig(scenario));
 % to animate more slowly uncomment the following line
 % pause(0.01)
end

1 Featured Examples

1-446

Detecting platforms

In the example above, you added three radars with different update rates: the tower has an update
rate of 10 Hz, and the helicopter had two radars with update rates of 20 Hz and 30 Hz, respectively.

The scenario can be placed into a mode in which the call to advance updates the time of simulation
as needed to update each of the sensors it contains. You can achieve this by setting the UpdateRate
of the scenario to zero.

scenario.UpdateRate = 0;

To show the simulation time, add a UI control to the figure.

fig = ancestor(tPlot.Parent,'Figure');
timeReadout = uicontrol(fig,'Style','text','HorizontalAlignment','left','Position',[0 0 200 20]);
timeReadout.String = "SimulationTime: " + scenario.SimulationTime;

 Radar Scenario Tutorial

1-447

Now the proper sensor times can be reached. You can use detect to get the detections available by
each sensor within the loop. Detections can be shown by constructing a detectionPlotter object.

dPlotter = detectionPlotter(tPlot,'DisplayName','detections');

1 Featured Examples

1-448

You can run the same simulation again by restarting it and modifying it to report detections.

The detected positions for a radarDataGenerator can be extracted from the detection
Measurement field:

restart(scenario);

while advance(scenario)
 timeReadout.String = "SimulationTime: " + scenario.SimulationTime;
 detections = detect(scenario);

 % extract column vector of measurement positions
 allDetections = [detections{:}];
 if ~isempty(allDetections)
 measurement = cat(2,allDetections.Measurement)';
 else
 measurement = zeros(0,3);
 end

 plotDetection(dPlotter, measurement);

 poses = platformPoses(scenario);
 positions = vertcat(poses.Position);
 orientations = vertcat(poses.Orientation);
 plotPlatform(pPlotter, positions, dimensions, orientations);
 plotCoverage(covPlotter, coverageConfig(scenario));
end

 Radar Scenario Tutorial

1-449

Notice that the update time of simulation increments non-uniformly to the times required by each of
the sensors.

Summary

In this example, you learned how to construct and visualize a simple scenario and obtain detections
generated by a radar data generator.

1 Featured Examples

1-450

Use theaterPlot to Visualize Radar Scenario
This example shows how to use theaterPlot to visualize various aspects of a radar scenario.

Introduction

theaterPlot is an efficient tool for visualizing various aspects of a radar scenario. It is composed of
a primary object, which hosts the plotting environment based on a parent axes, and plotters to plot
the desired aspects of features from the radar scenario.

This figure shows a structural representation of a theaterPlot object.

The Parent property specifies the axes on which the theater plot is enabled. You can specify the
parent axes of a theater plot during object creation. If you do not specify a parent axes,
theaterPlot creates a new figure and uses the current axes of the created figure as its Parent
property. You can also set the axes limits of the parent axes using the XLimits, YLimits, and
Zlimits properties by using name-value pair arguments during object creation. Set the units of
measurement for each axes using the AxesUnits property.

The Plotters property holds plotters that you added to the theaterPlot object.

• platformPlotter — Plot platforms in a radar scenario
• trajectoryPlotter — Plot trajectories in a radar scenario
• orientationPlotter — Plot orientation of platforms in a radar scenario
• coveragePlotter — Plot sensor coverage and sensor beams in a radar scenario
• detectionPlotter — Plot sensor detections in a radar scenario
• trackPlotter — Plot tracks in a radar scenario

You can specify visual elements and effects for each plotter during the creation of the plotter. Each
plotter is also paired with a theaterPlot object function, which you need to call to plot the results.

 Use theaterPlot to Visualize Radar Scenario

1-451

For example, a coveragePlotter is paired with a plotCoverage object function that shows the
sensor coverage.

This example showcases a few plotters for visualizing a radar scenario. theaterPlot can work
efficiently with a radarScenario even though you do not necessarily need a radarScenario to use
the theaterPlot object.

Create theaterPlot and radarScenario Objects

Create a radarScenario object and a theaterPlot object.

simulationDuration = 100;
scene = radarScenario('StopTime',simulationDuration);
tp = theaterPlot('XLimits',[-250 250],'YLimits',[-250 250],'ZLimits',[0 120]);
view(3);grid on;

Create a Trajectory Plotter and a Platform Plotter for a Target

Create a waypoint trajectory for a target platform.

timeOfArrival = [0 simulationDuration];
waypoints = [100 -100 10; 100 100 80];
trajectory = waypointTrajectory(waypoints,timeOfArrival);

Add a cuboid target platform that follows the specified trajectory. First add a target platform to the
radar scenario.

target = platform(scene,'Trajectory',trajectory,'Dimensions', ...
 struct('Length',35,'Width',15,'Height',5.5,'OriginOffset',[0 0 0]));

Then add a trajectoryPlotter object to the theaterPlot object, and use the plotTrajectory
function to plot the waypoint trajectory.

trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory','Color','k','LineWidth',1.2);
plotTrajectory(trajPlotter,{trajectory.Waypoints})

Tip You can plot multiple same-type features (platforms, trajectories, orientations, coverages,
detections, or tracks) together using one plotter. For example, you can plot multiple trajectories
together by specifying a cell array of waypoints as the second argument of the plotTrajectory
function. See the syntax description of plotTrajectory for more details.

Define a plotter for the target platform.

targetPlotter = platformPlotter(tp,'DisplayName','Target', ...
 'Marker','s','MarkerEdgeColor','g','MarkerSize',2);
plotPlatform(targetPlotter,target.Position, ...
 target.Dimensions,quaternion(target.Orientation,'rotvecd'))

You can add graphical objects other than the plotter objects on the theaterPlot by directly plotting
on the parent axes of the theaterPlot object. Put a circle marker at the origin.

hold on
plot3(tp.Parent,0,0,0,'Color','k','Marker','o','MarkerSize',4)

Create a Platform with a Mounted radar Sensor

Add a tower platform to the scenario.

1 Featured Examples

1-452

tower = platform(scene,'Position',[-100,0,0],'Dimensions', ...
 struct('Length',5,'Width',5,'Height',30,'OriginOffset',[0 0 -15]));

Display the tower using a platform plotter.

towerPlotter = platformPlotter(tp,'DisplayName','Tower','Marker','s','MarkerSize',2);
plotPlatform(towerPlotter,tower.Position,tower.Dimensions,quaternion(tower.Orientation,'rotvecd'))

Mount a monostatic radar to the top of the tower.

radar = radarDataGenerator(1,'DetectionMode','Monostatic', ...
 'UpdateRate',5, ...
 'MountingLocation',[0, 0, 30], ...
 'FieldOfView',[4, 30],...
 'MechanicalAzimuthLimits',[-60 60], ...
 'MechanicalElevationLimits',[0 0], ...
 'HasElevation',true, ...
 'RangeResolution',200, ...
 'AzimuthResolution',20, ...
 'ElevationResolution',20);
tower.Sensors = radar;

Add a coveragePlotter and plot the coverage and initial beam for the monostatic radar. When
plotting the coverage, the plotCoverage object function requires a second argument that specifies
the configuration of the sensor coverage. Obtain the configuration by using the coverageConfig
function on the radar scenario scene.

radarPlotter = coveragePlotter(tp,'Color','b','DisplayName','radar beam');
plotCoverage(radarPlotter,coverageConfig(scene))

Create a detection plotter to plot the detections that the radar generates.

detPlotter = detectionPlotter(tp,'DisplayName','Detection','MarkerFaceColor','r','MarkerSize',4);

Run the scenario and update the theater plot

Iterate through the radar scenario and generate radar detections. Plot the platform, radar coverage,
and detections.

rng(2019) % for repeatable results
while advance(scene)
 % Plot target.
 plotPlatform(targetPlotter,target.Position, ...
 target.Dimensions,quaternion(target.Orientation,'rotvecd'))

 % Plot sensor coverage.
 plotCoverage(radarPlotter,coverageConfig(scene))

 % Extract target pose from the view of the tower and use the extracted
 % pose to generate detections.
 poseInTower = targetPoses(tower);
 [detections, numDets] = radar(poseInTower,scene.SimulationTime);
 detPos = zeros(numDets,3);
 detNoise = zeros(3,3,numDets);

 % Obtain detection pose relative to the scenario frame. Also, obtain
 % the covariance of the detection.
 for i=1:numDets

 Use theaterPlot to Visualize Radar Scenario

1-453

 a = detections;
 detPos(i,:) = tower.Trajectory.Position + detections{i}.Measurement';
 detNoise(:,:,i) = detections{i}.MeasurementNoise;
 end

 % Plot any generated detections with the covariance ellipses.
 if ~isempty(detPos)
 plotDetection(detPlotter,detPos,detNoise)
 end
end

You can zoom in on the detection in the figure to visualize the plotted covariance ellipses of the
generated detections.

Summary

In this example, you learned about the organization of a theaterPlot object. You also learned how
to visualize a simple radar scenario using the theaterPlot object.

1 Featured Examples

1-454

Simulating a Scanning Radar
This example shows how to simulate detection and tracking with a scanning monostatic radar. We'll
see how to configure a statistical radar model with mechanical and electronic scanning capabilities,
how to set up a scenario management tool to handle platform dynamics and timing, and how to
inspect the detections and tracks that are generated.

Introduction

Statistical Radar Model

Statistical radar models such as radarDataGenerator offer valuable data for early-stage
development of radar systems. The system is modeled from the point of view of its performance
characteristics, and a minimal set of parameters is used along with established theory to determine
how this system will interact with its environment. This includes specification of fundamental system
parameters such as operating frequency, bandwidth, and pulse repetition frequency (PRF), along with
important metrics like angle and range resolution, false alarm rate, and detection probability. The
radar model has dedicated modes for monostatic, bistatic, and passive operation. The primary output
of this model is raw detection data or a sequence of track updates. While time-domain signals are not
generated, an emitter can specify a numeric ID for the waveform it's using so that approriate signal
gain and rejection can be considered. Detections may be output in the radar frame, or in the scenario
frame if the receiving radar has knowledge of the location and orientation of the transmitter. Tracks
are generated using one of a variety of tracking and track management algorithms. Data rate is
handled by a system update rate specification, so that detections are generated at the appropriate
rate.

Scenario Management

The model works in tandem with a radarScenario to generate detection or track data over time in
a dynamic environment. This scenario object not only manages the simulation time, but can handle
the passing of data structures between objects in the scene as required when a frame of detection or
track update is requested. The radar object is mounted on a platform which handles dynamics, such
as position, velocity, and orientation in the scenario frame. These scenario platforms also may contain
signature information, which describes how the platform appears to various types of sensors. For our
purposes, the rcsSignature class will be used to endow target platforms with a radar cross section.

Scanning

Scanning functionality is specified with the radar itself, and can be done in a mechanical or electronic
style. With mechanical scanning, the pointing direction cannot change instantaneously, but is
constrained by a maximum rotation rate in azimuth and elevation. With electronic scanning there is
no such constraint, and the scan direction resets at the beginning of each loop. The radar is also
allowed to perform mechanical and electronic scanning simultaneously. The figure below
demonstrates the difference in scan pattern between these two modes. Notice that with the electronic
mode the scan angle is always increasing, and with the mechanical mode the scan position always
changes to an adjacent position. The scanning happens in azimuth first because that is the primary
scan direction, which is the direction with the greatest extent of scan limit.

 Simulating a Scanning Radar

1-455

Scenario: Air Surveillance

For this scenario, we'll look at a scanning radar system with its antenna mounted on a tower, as might
be used for the tracking of aircraft. We'll scan over a relatively small area, look at a couple inbound
platforms with different RCS profiles, and inspect detection and track data. We'll see the effect of
SNR and range on our ability to make detections.

Radar System

Use a 1 GHz center frequency and a bandwidth of 1.5 MHz, to give us a range resolution of about 100
meters. To model a single pulse per scan position, set the update rate equal to the desired PRF. Set
the size of the range ambiguity to reflect our PRF choice, and set our upper range limit to twice the
size of the range ambiguity to enable detections of objects in the first range ambiguity.

% Set the seed for repeatability
rng(2021);

% System parameters
c = physconst('lightspeed');
fc = 1e9; % Hz
bandwidth = 1.5e6; % Hz
prf = 4e3; % Hz
updateRate = prf;
rangeRes = c/(2*bandwidth); % m
rangeAmb = c/(2*prf); % m
rangeLims = [0 2*rangeAmb];

Besides choosing between mechanical and electronic scan modes, the scanning behavior is controlled
by the specification of the scan limits and field of view (FoV) in azimuth and elevation. The FoV
consists of the azimuth and elevation extent of the observable region at each scan position, similar to
a two-sided half-power beamwidth specification. The scan points are chosen so that the total angular
extent defined by the scan limit is covered by nonoverlapping segments with size equal to the FoV.
Scan limits are specified in the radar's frame, which may be rotated from its platform's frame via the
MountingAngles property.

We'll scan +/-20 degrees in azimuth and +/-10 degrees in elevation. Set the FoV to 4 degrees azimuth
and 8 degrees elevation. Finally, specify the total number of complete scans to simulate, which will
dictate the total simulation time.

1 Featured Examples

1-456

% Scanning parameters
azLimits = [-20 20];
elLimits = [-10 10];
fov = [4;8]; % deg
numFullScans = 20; % number of full scans to simulate

The total number of scan points can be found as follows. The scan limits denote the minimum and
maximum scan angles referenced to the antenna boresight vector, so the total area scanned in one
direction is greater than the extent of the scan limits by up to half the FoV in that direction. The
pattern is always a rectangular grid over az/el.

numScanPointsAz = floor(diff(azLimits)/fov(1)) + 1;
numScanPointsEl = floor(diff(elLimits)/fov(2)) + 1;
numScanPoints = numScanPointsAz*numScanPointsEl;

A specification of angular resolution separate from FoV will be used, which allows us to model
something like monopulse angle estimation. This angular resolution is for determing our ability to
discriminate between targets. and is used to derive the actual angle accuracy from the Cramer-Rao
lower bound (CRLB) for a monopulse angle estimation with that resolution. Similarly, range resolution
determines the minimum spacing in range required to discriminate two targets, but the actual range
measurement accuracy comes from the CRLB for range estimation. Exact measureables can be used
by turning measurement noise off with the HasNoise property. Typically, measurement error does
not go to 0 as SNR increases without bound. This can be captured by the "bias" properties, of which
there is one for each type of measureable. For our purposes we will leave these at their defaults.

Let our angular resolution be 1/4th the FoV in each direction, which would allow us to discriminate
between up to 16 point targets in the FoV at the same range.

angRes = fov/4;

Reference Target and Radar Loop Gain

Instead of directly specifying things like transmit power, noise power, and specifics of the detection
algorithm used, this radar model uses the concept of radar loop gain to translate target RCS and
range into an SNR, which is translated directly into a detection probability. Radar loop gain is an
important property of any radar system, and is computed with a reference target, which consists of a
reference range and RCS, and a receiver operating characteristic (ROC) for given detection and false
alarm probabilities.

We'll use the default detection probability of 90% for a reference target at 20 km and 0 dBsm. We'll
use the default false alarm rate of 1e-6 false alarms per resolution cell per update.

refTgtRange = 20e3;
refTgtRCS = 0;
detProb = 0.9;
faRate = 1e-6;

Constructing the Radar

Let's now construct our radar using the parameters specified above. Use the lower scan limit in
elevation to set the pitch mounting angle of the radar from its platform. This points our boresight up
so that the lower edge of the scanning area is parallel to the ground (that is, none of our scan points
will point the radar towards the ground).

pitch = elLimits(1); % mount the antenna rotated upwards

 Simulating a Scanning Radar

1-457

Enable elevation angle measurements, false alarm generation, and range ambiguities with the
corresponding Has... property. To model a radar that only measures range and angle, set
HasRangeRate to false. To get detections in scenario coordinates, our radar needs to be aware of the
orientation of the transmitter. Because we're using a monostatic radar, this can be achieved by
enabling inertial navigation system (INS) functionality with the HasINS property.

% Create radar object
sensorIndex = 1; % a unique identifier is required
radar = radarDataGenerator(sensorIndex,'UpdateRate',updateRate,...
 'DetectionMode','Monostatic','ScanMode','Electronic','TargetReportFormat','Detections','DetectionCoordinates','scenario',...
 'HasElevation',true,'HasINS',true,'HasRangeRate',false,'HasRangeAmbiguities',true,'HasFalseAlarms',true,...
 'CenterFrequency',fc,'Bandwidth',bandwidth,...
 'RangeResolution',rangeRes,'AzimuthResolution',angRes(1),'ElevationResolution',angRes(2),...
 'ReferenceRange',refTgtRange,'ReferenceRCS',refTgtRCS,'DetectionProbability',detProb,'FalseAlarmRate',faRate,...
 'RangeLimits',rangeLims,'MaxUnambiguousRange',rangeAmb,'ElectronicAzimuthLimits',azLimits,'ElectronicElevationLimits',elLimits,...
 'FieldOfView',fov,'MountingAngles',[0 pitch 0]);

The provided helper class can be used to visualize our scan pattern. We'll also use this plotter to
animate the scan pattern in the simulation loop.

scanplt = helperScanPatternDisplay(radar);
scanplt.makeOverviewPlot;

Note that our scan points in azimuth extent exactly to the specified azimuth scan limits, while the
elevation scan points are pulled in slightly as needed to avoid overlapping or redundant scan points.

1 Featured Examples

1-458

Calculate the total number of range-angle resolution cells for our system, and the total number of
frames to be used for detection. We can then compute the expected number of false alarms by
multiplying the false alarm rate by the total number of resolution cells interrogated throughout the
simulation.

numResolutionCells = diff(rangeLims)*prod(fov)/(rangeRes*prod(angRes));
numFrames = numFullScans*numScanPoints; % total number of frames for detection
expNumFAs = faRate*numFrames*numResolutionCells % expected number of FAs

expNumFAs = 7.9200

Scenario and Target

We'll use radarScenario to manage the top-level simulation flow. This object provides functionality
to add new platforms and quickly generate detections from all sensor objects in the scenario. It also
manages the flow of time in the simulation. Use the total number of frames calculated above to find
the required StopTime, and to adaptively update simulation time based on the update rate of objects
in the scene, set the scenario update rate to 0.

% Create scenario
stopTime = numFullScans*numScanPoints/prf;
scene = radarScenario('StopTime',stopTime,'UpdateRate',0);

Use the platform method to generate new platform objects, add them to the scene, and return a
handle for access to the platform properties. Each platform has a unique ID which is assigned by the
scenario upon construction. For a static platform, only the Position property needs to be set. To
simulate a standard constant-velocity kinematic trajectory, use kinematicTrajectory and specify
position and velocity.

Let's create two target platforms at different ranges, both inbound at different speeds and angles.

% Create platforms
rdrPlat = platform(scene,'Position',[0 0 12]); % place 12 m above the origin
tgtPlat(1) = platform(scene,'Trajectory',kinematicTrajectory('Position',[38e3 6e3 10e3],'Velocity',[-380 -50 0]));
tgtPlat(2) = platform(scene,'Trajectory',kinematicTrajectory('Position',[25e3 -3e3 1e3],'Velocity',[-280 10 -10]));

To enable convenience detection methods and automatic advancement of simulation time, the
scenario needs to be aware of the radar object constructed earlier. To do this, mount the radar to the
platform by populating the platform's Sensors property. To mount more than one sensor on a
platform, the Sensors property may be a cell array of sensor objects.

% Mount radar to platform
rdrPlat.Sensors = radar;

The rcsSignature class can be used to specify platform RCS as a function of aspect angle. For a
simple constant-RCS signature, simply set the Pattern property to a scalar value. Let one platform
be 20 dBsm and the other 4 dBsm to demonstrate the difference in detectability.

% Set target platform RCS profiles
tgtRCS = [20, 4]; % dBsm
tgtPlat(1).Signatures = rcsSignature('Pattern',tgtRCS(1));
tgtPlat(2).Signatures = rcsSignature('Pattern',tgtRCS(2));

Detectability

Let's take a look at the theoretical SNR that can be expected for out targets. Because we're using a
simple kinematic trajectory, we can compute truth position and range as such:

 Simulating a Scanning Radar

1-459

time = (0:numFrames-1).'/updateRate;
tgtPosTruth(:,:,1) = tgtPlat(1).Position + time*tgtPlat(1).Trajectory.Velocity;
tgtPosTruth(:,:,2) = tgtPlat(2).Position + time*tgtPlat(2).Trajectory.Velocity;
tgtRangeTruth(:,1) = sqrt(sum((tgtPosTruth(:,:,1)-rdrPlat.Position).^2,2));
tgtRangeTruth(:,2) = sqrt(sum((tgtPosTruth(:,:,2)-rdrPlat.Position).^2,2));

We can then use the known target RCS and the radar loop gain computed by the radar model to get
the truth SNR for each target:

tgtSnr = tgtRCS - 40*log10(tgtRangeTruth) + radar.RadarLoopGain;

The minimum SNR required for detection given a magnitude-only detection scheme such as CFAR,
given our probability of detection and false alarm rate is

minSnr = 20*log10(erfcinv(2*radar.FalseAlarmRate) - erfcinv(2*radar.DetectionProbability)); % dB

Going just a bit further, we can compute our minimum range for detection:

Rd = 10.^((tgtRCS - minSnr + radar.RadarLoopGain)/40); % meters

Let's compare our targets' mean range and SNR to the minimum range and SNR thresholds. The total
travel distance of our targets is small enough that the range-based SNR does not change significantly.

snrMargin = mean(tgtSnr,1) - minSnr

snrMargin = 1×2

 8.0827 0.0019

rangeMargin = (Rd - mean(tgtRangeTruth,1))/1e3 % km

rangeMargin = 1×2

 23.5299 0.0028

The first target is about 8 dB brighter than needed for detection with the given CFAR parameters,
while the second target is considered barely detectable.

Simulate Detections

The primary simulation loop starts by calling advance on the scenario object. This method steps the
scenario forward to the next time at which it's been determined an object in the scene requires an
update, and returns false when the specified stop time is reached, exiting the loop. Note that the first
call to advance does not step the simulation time, so that the first frame of data collection may occur
at 0 s. As an alternative to using advance, scene.SimulationStatus can be checked to determine
if the sim has run to completion.

Inside the loop, the detection and track generation methods may be called for any sensor object
individually (see the sensor step method), but convenience methods exist to generate detections and
tracks for all sensors and from all targets in the scene with one function call. Because we only have
one sensor, detect(scene) is a good solution to get a list of detections for all targets in the scene.
By initiating the generation of detections at the top level like this, the scene itself will handle passing
required timing, INS, and other configuration data to the sensor. The visualization class used earlier
will be used here as well to animate the scan pattern.

1 Featured Examples

1-460

allDets = []; % initialize list of all detections generated
lookAngs = zeros(2,numFrames);
simTime = zeros(1,numFrames);
frame = 0; % current frame
while advance(scene) % advance until StopTime is reached

 % Increment frame index and record simulation time
 frame = frame + 1;
 simTime(frame) = scene.SimulationTime;

 % Generate new detections
 dets = detect(scene);

 % Record look angle for inspection
 lookAngs(:,frame) = radar.LookAngle;

 % Update coverage plot
 scanplt.updatePlot(radar.LookAngle);

 % Compile any new detections
 allDets = [allDets;dets];

end

Scan Behavior

Plot the recorded look angles for the first two complete scans to inspect the pattern. The radar scans
first in azimuth, and steps up in elevation at the end of each azimuth scan, instantaneously resetting
the look angle at the start of each new scan.

figure;
plot(simTime(1:2*numScanPoints)*1e3,lookAngs(:,1:2*numScanPoints));
xlabel('Time (ms)');
ylabel('Look Angle (deg)');
legend('Azimuth','Elevation');
title('Look Angles');

 Simulating a Scanning Radar

1-461

Detections

Let's inspect the contents of an objectDetection as output by our radar.

allDets{1} % look at the first detection

ans =
 objectDetection with properties:

 Time: 7.5000e-04
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {[1x1 struct]}

Time is the simulation time at which the detection was generated. SensorIndex tells us which
sensor this detection was generated by (which is important when we have multiple sensors and are
using the scene-level detect method). Measurement is the measurable value associated with the
detection. The format depends on the choice of our detection mode and output coordinates.
MeasurementNoise gives the variance or covariance of the measurement and is used by tracker
models. Because we're outputting detections in scenario coordinates, the measurement field is simply
the estimated position vector of the target, and the measurement noise gives the covariance of that
position estimate.

1 Featured Examples

1-462

The ObjectAttributes field contains some useful metadata:

allDets{1}.ObjectAttributes{1}

ans = struct with fields:
 TargetIndex: 3
 SNR: 12.5894

This tells us that the detection came from the platform with index 2, which is the unique ID assigned
by the scenario to our first target platform (the second platform to be added to the scene). We also
see the SNR of this detection is about what we expected for our first target. If the detection is a false
alarm, TargetIndex will be -1, which is an invalid platform ID. Compile the target index, SNR, and
time of each detection.

detTgtIdx = cellfun(@(t) t.ObjectAttributes{1}.TargetIndex, allDets);
detTgtSnr = cellfun(@(t) t.ObjectAttributes{1}.SNR, allDets);
detTime = cellfun(@(t) t.Time, allDets);
firstTgtDet = find(detTgtIdx == tgtPlat(1).PlatformID);
secondTgtDet = find(detTgtIdx == tgtPlat(2).PlatformID);

We can find the total number of FA detections with:

numFAs = numel(find(detTgtIdx==-1))

numFAs = 8

which is close to the expected number of FAs computed earlier.

Collect the measurement data across detections and plot along with truth positions for the two target
platforms.

tgtPosObs = cell2mat(cellfun(@(t) t.Measurement,allDets,'UniformOutput',0).');
subplot(1,2,1);
helperPlotPositionError(tgtPosTruth(:,:,1),time,tgtPosObs(:,firstTgtDet),detTime(firstTgtDet),scene.SimulationTime);
title('Target 1 Position Error');
subplot(1,2,2);
helperPlotPositionError(tgtPosTruth(:,:,2),time,tgtPosObs(:,secondTgtDet),detTime(secondTgtDet),scene.SimulationTime);
title('Target 2 Position Error');
set(gcf,'Position',get(gcf,'Position')+[0 0 600 0]);

 Simulating a Scanning Radar

1-463

Most of our detections originate from the first target, which is unsurprising considering the
detectability analysis earlier. However, it was not detected on every frame, and the second target has
generated many detections despite having a low SNR. Though the first target is easily detected, the
measurement error is large because the target is in our second range ambiguity and no
disambiguation has been performed, whereas our second target, when detected, shows position error
that is consistent with our 100 meter range resolution and relatively poor angle resolution.

Let's also look at the total variance of the detections against SNR. The total variance is the sum of the
marginal variances in each cartesian direction (X, Y, and Z). This variance includes the effects of
estimation in range-angle space along with the transformation of those statistics to scenario
coordinates.

detTotVar = cellfun(@(t) trace(t.MeasurementNoise),allDets);
figure;
subplot(1,2,1);
helperPlotPositionTotVar(detTgtSnr(firstTgtDet),detTotVar(firstTgtDet));
title('First Target');
subplot(1,2,2);
helperPlotPositionTotVar(detTgtSnr(secondTgtDet),detTotVar(secondTgtDet));
title('Second Target');
set(gcf,'Position',get(gcf,'Position')+[0 0 600 0]);

Note that although the absolute position error for the first target was greater due to the range
ambiguity, the lower measurement variance reflects both the greater SNR of the first target and its
apparently short range.

Simulate Tracks

The radarDataGenerator is also capable of performing open-loop tracking. Instead of outputting
detection objects, it can output track updates.

Let's run the simulation again, but this time we'll let our radar model output tracks directly. Firstly,
re-set some properties of the radar model to generate tracks in the scenario frame.

release(radar); % unlock for re-simulation
radar.TargetReportFormat = 'Tracks';
radar.TrackCoordinates = 'Scenario';

1 Featured Examples

1-464

Tracking can be performed by a number of different algorithms. There are simple alpha-beta filters
and Kalman filters of the linear, extended, and unscented variety, along with constant-velocity,
constant-acceleration, and constant-turnrate motion models. The algorithm to be used is specified
with the FilterInitializationFcn property. This is a function handle or the name of a function in
a character vector, i.e. @initcvekf or 'initcvekf', that takes an initial detection as input and
returns an initialized tracker object. Any user-defined function with the same signature may be used.
We'll use the supplied constant-velocity extended Kalman filter.

radar.FilterInitializationFcn = @initcvekf;

The overall structure of the sim loop is the same, however we must call the radar's step function
manually. The required inputs are a target poses struct, acquired by calling targetPoses on our
radar platform, the INS struct, acquired by calling pose on the radar platform, and the current
simulation time.

restart(scene); % restart scenario

allTracks = []; % initialize list of all track data
while advance(scene)

 % Generate new track data
 tgtPoses = targetPoses(rdrPlat);
 ins = pose(rdrPlat);
 tracks = radar(tgtPoses,ins,scene.SimulationTime);

 % Compile any new track data
 allTracks = [allTracks;tracks];

end

Inspecting a track object:

allTracks(1) % look at first track update

ans =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 1
 UpdateTime: 0.0093
 Age: 34
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 1 0 0 0]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

TrackID is the unique identifier of the track file, and SourceIndex is the ID of the tracker object
reporting the track, which is useful when you have multiple trackers in the scene. When a multi-
hypothesis tracker is used, BranchID gives the index of the hypothesis used. The State field

 Simulating a Scanning Radar

1-465

contains the state information on this update. Because we're using a constant-velocity model and
scenario-frame track coordinates, State consists of the position and velocity vectors. UpdateTime
gives the time at which this track update was generated. Another important property, IsCoasted,
tells you if this track update used a fresh target detection to update the filter, or if it's simply
propagated forward in time from the last target detection (the track is "coasted").

The ObjectAttributes structure gives the ID of the platform whose signature is being detected, and
the SNR of that signature during the update.

allTracks(1).ObjectAttributes

ans = struct with fields:
 TargetIndex: 3
 SNR: 18.5910

Collect the target index and update time. Also check how many detections were used to update our
tracks.

trackTgtIdx = arrayfun(@(t) t.TargetIndex,[allTracks.ObjectAttributes]);
updateTime = [allTracks.UpdateTime];
firstTgtTrack = find(trackTgtIdx == tgtPlat(1).PlatformID);
secondTgtTrack = find(trackTgtIdx == tgtPlat(2).PlatformID);

numUpdates = numel(find(~[allTracks.IsCoasted])) % total number of track updates with new detection data

numUpdates = 31

This is roughly the number of non-FA detections generated in the first part.

Let's look at the reported positions in the XY plane and their covariances, along with truth position
data. Because the first target is in the first range ambiguity and no disambiguation is performed, let's
first find the "truth" ambiguous position for the first target as such:

los = tgtPosTruth(:,:,1) - rdrPlat.Position;
R = sqrt(sum(los.^2,2));
los = los./R;
Ramb = mod(R,rangeAmb);
tgtPosTruthAmb = rdrPlat.Position + los.*Ramb;

Now use the provided helper function to plot a visualization of the position track.

figure;
subplot(1,2,1);
helperPlotPositionTrack(tgtPosTruthAmb,allTracks(firstTgtTrack));
title('First Target Track');
subplot(1,2,2);
helperPlotPositionTrack(tgtPosTruth(:,:,2),allTracks(secondTgtTrack));
title('Second Target Track');
set(gcf,'Position',get(gcf,'Position')+[0 0 600 0]);

1 Featured Examples

1-466

In both cases, the position estimates start by converging on the truth (or range-ambiguous truth)
trajectory. For the first target we have more track updates and the final state appears closer to
steady-state convergence. Looking at the covariance contours, we see the expected initial decrease in
size as the tracking filter warms up.

To take a closer look at our tracking performance, plot the magnitude of the position estimation error
for both targets, and indicate which samples were updated with target detections.

figure;
subplot(1,2,1);
helperPlotPositionTrackError(tgtPosTruthAmb,time,allTracks(firstTgtTrack),updateTime(firstTgtTrack));
title('First Target Ambiguous Position Error');
subplot(1,2,2);
helperPlotPositionTrackError(tgtPosTruth(:,:,2),time,allTracks(secondTgtTrack),updateTime(secondTgtTrack));
title('Second Target Position Error');
set(gcf,'Position',get(gcf,'Position')+[0 0 600 0]);

For the first target, position error decreases on samples that had a new detection to update the track
file (indicated by a red circle). Since the second target had much lower SNR, the error in some
individual detections was great enough to increase the position error of the track. Despite this, the

 Simulating a Scanning Radar

1-467

second target track position error has a small downward trend, indicating that the estimated state
will likely converge. However, we see an issue with our ability to track the first target. Because it is in
the first range ambiguity and has a component of motion perpendicular to the line of sight, the
apparent velocity is actually changing, and the constant-velocity Kalman filter is unable to converge.

Conclusion

In this example we configured a statistical radar system for use in the simulation and analysis of
target detectability and trackability. We saw how to use the scan limits and field of view properties to
define a scan pattern, how to run the radar model with a scenario management tool, and how to
inspect the generated detections and tracks.

Helper Functions

function helperPlotPositionError(tgtPosTruth,time,tgtPosObs,detTime,T)

tgtPosTruthX = interp1(time,tgtPosTruth(:,1),detTime).';
tgtPosTruthY = interp1(time,tgtPosTruth(:,2),detTime).';
tgtPosTruthZ = interp1(time,tgtPosTruth(:,3),detTime).';

err = sqrt((tgtPosTruthX - tgtPosObs(1,:)).^2+(tgtPosTruthY - tgtPosObs(2,:)).^2+(tgtPosTruthZ - tgtPosObs(3,:)).^2);

plot(detTime*1e3,err/1e3,'--o');
grid on;
xlim([0 T*1e3]);
ylabel('RMS Error (km)');
xlabel('Time (ms)');

end

function helperPlotPositionTotVar(detTgtSnr,detTotVar)

plot(detTgtSnr,detTotVar,'--o');
grid on;
xlabel('SNR (dB)');
ylabel('Total Var (m^2)');

end

function helperPlotPositionTrack(tgtPosTruth,tracks)

plot(tgtPosTruth(:,1)/1e3,tgtPosTruth(:,2)/1e3);
hold on;

updateIdx = find(~[tracks.IsCoasted]);
theta = 0:0.01:2*pi;

for ind = 1:2:numel(updateIdx)

 % plot update
 T = tracks(updateIdx(ind));
 plot(T.State(1)/1e3,T.State(3)/1e3,'*black');
 sigma = T.StateCovariance([1 3],[1 3]);
 [evec,eval] = eigs(sigma);
 mag = sqrt(diag(eval)).';
 u = evec(:,1)*mag(1);
 v = evec(:,2)*mag(2);

1 Featured Examples

1-468

 x = cos(theta)*u(1) + sin(theta)*v(1);
 y = cos(theta)*u(2) + sin(theta)*v(2);
 plot(x/1e3 + T.State(1)/1e3,y/1e3 + T.State(3)/1e3,'magenta');

end

hold off;
grid on;
xlabel('X (km)');
ylabel('Y (km)');
legend('Truth Position','Position Estimates','Covariance','Location','northwest');

end

function helperPlotPositionTrackError(tgtPosTruth,time,tracks,updateTime)

state = [tracks.State];

sx = state(1,:);
sy = state(3,:);
sz = state(5,:);

x = interp1(time,tgtPosTruth(:,1),updateTime);
y = interp1(time,tgtPosTruth(:,2),updateTime);
z = interp1(time,tgtPosTruth(:,3),updateTime);

err = sqrt((x-sx).^2+(y-sy).^2+(z-sz).^2);

isUpdate = ~[tracks.IsCoasted];

plot(updateTime*1e3,err);
hold on;
plot(updateTime(isUpdate)*1e3,err(isUpdate),'or');
hold off;
grid on;
xlabel('Update Time (ms)');
ylabel('Error (m)')
legend('Coasted','Update','Location','northwest');

end

 Simulating a Scanning Radar

1-469

Simulating Passive Radar Sensors and Radar Interferences
This example shows you how to model and simulate the output of active and passive radar sensors
using the radarDataGenerator. In this example, you observe how radio frequency (RF)
interference impacts the detection performance of a radar. In addition, you use passive radar sensors
to estimate the location and type of the RF interference.

Introduction

Assessing tracking performance for radars requires modeling a radio frequency (RF) scenario. This
includes:

• Generating RF emissions
• Propagating the emissions and reflecting these emissions from platforms
• Receiving the emissions, calculating interference losses, and generating detections

Create scenario

This example shows you how to perform each of the steps above using a scenario consisting of three
platforms:

1 Airborne platform flying north at 500 km/h from the bottom of the scenario
2 Airborne platform flying south at 600 km/h from the top of the scenario
3 Airborne platform flying east at 700 km/h in the middle of the scenario

% Create a radar scenario to manage the movement of the platforms.
scene = radarScenario;

% Set the duration of the scenario to 10 seconds.
scene.StopTime = 10; % s

% Platform 1: Airborne and northbound at 500 km/h
spd = 500*1e3/3600; % m/s
wp1 = [0 0 -6000];
wp2 = [spd*scene.StopTime 0 -6000];
toa = [0; scene.StopTime];
platform(scene, 'Trajectory', waypointTrajectory('Waypoints', [wp1; wp2], 'TimeOfArrival', toa));

% Platform 2: Airborne and southbound at 600 km/h
spd = 600*1e3/3600; % m/s
wp1 = [30e3+spd*scene.StopTime 0 -6000];
wp2 = [30e3 0 -6000];
toa = [0; scene.StopTime];
platform(scene, 'Trajectory', waypointTrajectory('Waypoints', [wp1; wp2], 'TimeOfArrival', toa));

% Platform 3: Airborne and eastbound at 700 km/h
spd = 700*1e3/3600; % m/s
wp1 = [10e3 1e3 -6000];
wp2 = [10e3 1e3+spd*scene.StopTime -6000];
toa = [0; scene.StopTime];
platform(scene, 'Trajectory', waypointTrajectory('Waypoints', [wp1; wp2], 'TimeOfArrival', toa));

Use theaterPlot to create a display showing the platforms in the scenario and their trajectories.

ax = axes;
theaterDisplay = theaterPlot('Parent',ax,'AxesUnit',["km" "km" "km"], 'XLim',[-10000 40000] , 'YLim', [-20000 20000], 'ZLim',[-1e7 1e7]);

1 Featured Examples

1-470

view([90 -90]) % swap X and Y axis
patch('XData',[-10000 -10000 40000 40000],'YData',[-20000 20000 20000 -20000],'EdgeColor','none', 'FaceColor',[0.8 0.8 0.8],'DisplayName','Ground');

platPlotter = platformPlotter(theaterDisplay,'DisplayName','Platforms','MarkerFaceColor','k');
plotPlatform(platPlotter,vertcat(scene.platformPoses.Position));

trajPlotter = trajectoryPlotter(theaterDisplay,'DisplayName','Trajectories','LineStyle','-');
allTrajectories = cellfun(@(x) x.Trajectory.lookupPose(linspace(0,scene.StopTime,10)), scene.Platforms, 'UniformOutput', false);
plotTrajectory(trajPlotter,allTrajectories);

Radar Detection in the Presence of Interfering Emissions

Often, a radar operates in an environment where other undesirable RF emissions interfere with the
waveforms emitted by the radar. When this occurs, the radar will experience a degradation in
detection performance in the direction of the interfering signals. Attach an RF emitter to the platform
at the bottom of the scenario (the first platform) and a radar to the platform at the top of the scenario
(the second platform).

Create an RF emitter

Model an RF emission using a radarEmitter. The emitter is in a forward-looking configuration with
an azimuthal field of view of 20 degrees to include the 2 other platforms in the scenario. The effective
isotropic radiated power (EIRP) sets the strength of the interfering signal. The waveform type is a
user-defined value used to enumerate the various waveform types that are present in the scenario.
For this scenario, use the value 0 to indicate a noise waveform type.

 Simulating Passive Radar Sensors and Radar Interferences

1-471

% Create the interference emitter.
rfEmitter = radarEmitter(1, 'No scanning', ...
 'FieldOfView', [20 5], ... % [az el] deg
 'EIRP', 200, ... % dBi
 'CenterFrequency', 300e6, ... % Hz
 'Bandwidth', 30e6, ... % Hz
 'WaveformType', 0) % Use 0 for noise-like emissions

rfEmitter =
 radarEmitter with properties:

 EmitterIndex: 1
 UpdateRate: 1
 ScanMode: 'No scanning'

 MountingLocation: [0 0 0]
 MountingAngles: [0 0 0]

 FieldOfView: [2x1 double]
 MechanicalAngle: 0
 LookAngle: 0
 HasElevation: 0

 EIRP: 200
 CenterFrequency: 300000000
 Bandwidth: 30000000
 WaveformType: 0
 ProcessingGain: 0

Attach the emitter to the first platform.

platEmit = scene.Platforms{1};
platEmit.Emitters = rfEmitter

platEmit =
 Platform with properties:

 PlatformID: 1
 ClassID: 0
 Position: [0 0 -6000]
 Orientation: [0 0 0]
 Dimensions: [1x1 struct]
 Trajectory: [1x1 waypointTrajectory]
 PoseEstimator: [1x1 insSensor]
 Emitters: {[1x1 radarEmitter]}
 Sensors: {}
 Signatures: {[1x1 rcsSignature]}

Create a monostatic radar

Equip the second platform with a monostatic radar. Use radarDataGenerator to model this type of
radar. Configure the radar to scan the azimuth sector in front of its platform which includes the other
platforms.

% Create a monostatic radar.
radar = radarDataGenerator(2, 'Sector', ...

1 Featured Examples

1-472

 'DetectionMode', 'monostatic', ...
 'UpdateRate', 12.5, ... % Hz
 'FieldOfView', [2 10]); % [az el] deg

% Mount the radar so that it scans the sector in front of the second
% platform which includes the interfering signal and the third platform.
radar.MountingAngles = [0 0 0]; % [Z Y X] deg

% Enable the radar's INS input so that it can use the pose estimated by
% the platform's pose estimator to generate detections.
radar.HasINS = true;

% Enable the radar's interference input so that the interference signal
% created by the emitter above can be passed to the radar.
radar.InterferenceInputPort = true;

% Set coordinate system for detections to scenario
radar.DetectionCoordinates = 'scenario'

radar =
 radarDataGenerator with properties:

 SensorIndex: 2
 UpdateRate: 12.5000
 DetectionMode: 'Monostatic'
 ScanMode: 'Mechanical'
 InterferenceInputPort: 1
 EmissionsInputPort: 0

 MountingLocation: [0 0 0]
 MountingAngles: [0 0 0]

 FieldOfView: [2 10]
 RangeLimits: [0 100000]

 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-06
 ReferenceRange: 100000

 TargetReportFormat: 'Clustered detections'

 Show all properties

% Attach the radar to the second platform.
platRadar = scene.Platforms{2};
platRadar.Sensors = radar;

Update the display to show the platforms, the radar, and the emitter in the scenario.

emitterColor = [0.9290 0.6940 0.1250];
radarColor = [0 0.4470 0.7410];
platEmitPlotter = platformPlotter(theaterDisplay,'DisplayName', 'RF emitter','Marker','d','MarkerFaceColor',emitterColor);
platRadarPlotter = platformPlotter(theaterDisplay,'DisplayName','Monostatic radar','Marker','d','MarkerFaceColor',radarColor);
platPlotter.DisplayName = 'Targets';
clearData(platPlotter);
covPlotter = coveragePlotter(theaterDisplay,'Alpha',[0.2 0]);

 Simulating Passive Radar Sensors and Radar Interferences

1-473

detPlotter = detectionPlotter(theaterDisplay,'DisplayName','Radar detections','MarkerFaceColor',radarColor);
title('Radar detection with an interfering emitter');

plotPlatform(platRadarPlotter, platRadar.pose.Position);
plotPlatform(platEmitPlotter, platEmit.pose.Position);
plotPlatform(platPlotter, scene.Platforms{3}.pose.Position);
plotCoverage(covPlotter, coverageConfig(scene), [-1 2], {emitterColor, radarColor});

In the preceding figure, the platform carrying the forward-looking radar is shown as a blue diamond,
with the radar's current field of view as a blue region originating from the platform. At the bottom of
the figure, the platform carrying the interfering RF emission is shown as a yellow diamond, with the
emitter's current field of view shown as a corresponding yellow region. Platforms without any
emitters or sensors attached to them are referred to as targets and are displayed as black triangles.

Simulate monostatic detections

In multi-rate scenarios, you can either find an update rate that is a common divider of all the sensors
and emitters rates defined in the scenario or you can use the continuous update which will
automatically advance the scenario to the next valid update time when calling advance.

scene.UpdateRate = 0

scene =
 radarScenario with properties:

 IsEarthCentered: 0
 UpdateRate: 0

1 Featured Examples

1-474

 SimulationTime: 0
 StopTime: 10
 SimulationStatus: NotStarted
 Platforms: {1x3 cell}

For each step in the following loop use:

1 advance to move all of the platforms according to their trajectories.
2 emit to update the emissions transmit direction from platEmit.
3 propagate to propagate the emissions directly to each platform in the scenario that lies within

the emitter's field of view. Each platform that receives a direct path emission generates a single-
bounce reflection that is also propagated to every other platform as a reflected emission.

4 detect to generate detections from the emissions received at platRadar.

This propagation of the emitter's emissions from the emitter to the radar sensor are illustrated in the
following image.

% Set the random seed for repeatable results.
rng(2018);

plotDets = {};
while advance(scene)

 % Emit the RF signal.
 txEmiss = emit(scene);

 % Reflect the emitted signal off of the platforms in the scenario.
 reflEmiss = propagate(scene, txEmiss);

 % Generate detections from the monostatic radar sensor.
 [dets, config] = detect(scene, reflEmiss);

 % Reset detections every time the radar completes a sector scan.
 if config.IsScanDone

 Simulating Passive Radar Sensors and Radar Interferences

1-475

 % Reset
 plotDets = dets;
 else
 % Buffer
 plotDets = [plotDets;dets]; %#ok<AGROW>
 end

 % Update display with current platform positions, beam positions and detections.
 plotPlatform(platRadarPlotter, platRadar.pose.Position);
 plotPlatform(platEmitPlotter, platEmit.pose.Position);
 plotPlatform(platPlotter, scene.Platforms{3}.pose.Position);
 plotCoverage(covPlotter, coverageConfig(scene), [-1 2], {emitterColor, radarColor});
 if ~isempty(plotDets)
 allDets = [plotDets{:}];
 % extract column vector of measurement positions
 meas = [allDets.Measurement]';
 plotDetection(detPlotter,meas);
 end
end

As shown in the preceding figure, the radar (shown in blue) is only able to detect the target in the
middle of the scenario. The detections are shown as blue, filled circles, and are made whenever the
radar's field of view (e.g. beam) sweeps across the target. However, when the radar's beam sweeps
across the emitting platform (shown in yellow), no detections are generated, since the interference
generated by this platform prevents detection by the radar.

1 Featured Examples

1-476

Passive Detection of RF Emissions

In the preceding section, the radar was unable to detect the location of the emitting platform because
the emissions from that platform masked the radar's own emissions. However, such strong emissions
can be detected and identified by passive sensors which listen for RF emissions in the scenario. These
sensors are often referred to as electronic support measures (ESM). These sensors typically listen
across a broad range of frequencies and attempt to identify unique emitters, the direction of arrival of
the emissions from those emitters, and whenever possible, the type of waveform used by the emitter.

Create an ESM sensor

Reuse the scenario from the previous section, but replace the monostatic radar on the first platform
with an ESM sensor. Use radarDataGenerator to model the ESM sensor and ensure that the
sensor is configured so that its center frequency and bandwidth includes the RF spectrum of the
emitter. Otherwise, it will be unable able to detect the emitter.

restart(scene);
esm = radarDataGenerator(1, 'No scanning', ...
 'DetectionMode', 'ESM', ...
 'UpdateRate', 12.5, ... % Hz
 'MountingAngles', [0 0 0], ... % [Z Y X] deg
 'FieldOfView', [30 10], ... % [az el] deg
 'CenterFrequency', 300e6, ... % Hz
 'Bandwidth', 30e6, ... % Hz
 'WaveformTypes', 0, ... % Detect the interference waveform type
 'HasINS', true)

esm =
 radarDataGenerator with properties:

 SensorIndex: 1
 EmitterIndex: 1
 UpdateRate: 12.5000
 DetectionMode: 'ESM'
 ScanMode: 'No scanning'

 MountingLocation: [0 0 0]
 MountingAngles: [0 0 0]

 FieldOfView: [30 10]

 FalseAlarmRate: 1.0000e-06

 Show all properties

Replace the radar on the second platform with the ESM sensor.

platESM = scene.Platforms{2};
platESM.Sensors = esm;

Update the visualization accordingly

platRadarPlotter.DisplayName = "ESM sensor";
esmColor = [0.4940 0.1840 0.5560];
platRadarPlotter.MarkerFaceColor = esmColor;
% use a helper to add an angle only detection plotter

 Simulating Passive Radar Sensors and Radar Interferences

1-477

delete(detPlotter);
esmDetPlotter = helperAngleOnlyDetectionPlotter(theaterDisplay,'DisplayName','ESM detections','Color',esmColor,'LineStyle','-');
clearData(covPlotter);

plotCoverage(covPlotter, coverageConfig(scene), [-1 1], {emitterColor, esmColor});
title('Passive detection of RF emissions');

In the preceding figure, the radar is replaced by an ESM sensor mounted on the second platform. The
ESM sensor's field of view is shown in magenta and includes both the emitting and target platforms.

Simulate ESM detections

Now simulate detections using the ESM sensor instead of the radar. You will notice that because the
ESM sensor is a passive sensor, it is unable to localize the emitting platform, but indicates the
direction of arrival the platform's emissions. These angle-only detections are shown as rays
originating from the ESM sensor towards the emitting platform.

% Set the random seed for repeatable results.
rng(2018);

plotDets = {};
snap = [];
while advance(scene)

 % Emit the RF signal.
 txEmiss = emit(scene);

1 Featured Examples

1-478

 % Reflect the emitted signal off of the platforms in the scenario.
 reflEmiss = propagate(scene, txEmiss);

 % Generate detections from the ESM sensor.
 [dets, config] = detect(scene, reflEmiss);

 % Reset detections every time the radar completes a sector scan.
 if config.IsScanDone
 % Reset
 plotDets = dets;
 else
 % Buffer
 plotDets = [plotDets;dets]; %#ok<AGROW>
 end

 % Update display with current platform positions, beam positions and detections.
 plotPlatform(platRadarPlotter, platRadar.pose.Position);
 plotPlatform(platEmitPlotter, platEmit.pose.Position);
 plotPlatform(platPlotter, scene.Platforms{3}.pose.Position);
 plotCoverage(covPlotter, coverageConfig(scene), [-1 1], {emitterColor, esmColor});
 plotDetection(esmDetPlotter,plotDets);

 % Record the reflected detection at t = 2 sec
 snap = getSnap(ax, scene.SimulationTime, 2, snap);
 drawnow
end
title('RF emitter detected by an ESM sensor');

 Simulating Passive Radar Sensors and Radar Interferences

1-479

The RF emissions are detected and their direction of arrival is estimated by the ESM sensor. This is
shown by the magenta line originating from the sensor and closely passing by the emitter. There is
some noise in the estimated angle, which is why the line does not pass directly through the emitter's
location.

The ESM sensor classifies the waveform types in its reported detections. For this emitter, it reports
the noise waveform type used by the emitter: 0.

dets{1}.ObjectAttributes{1}

ans = struct with fields:
 TargetIndex: 1
 EmitterIndex: 1
 WaveformType: 0
 SNR: 184.8224

Notice that the signal-to-noise ratio (SNR) of the emitted signal detected by the sensor is very large,
185 dB. Because the RF emitter has high power, reflections of the emitted waveform off of the target
will also be detected by the ESM sensor. This is seen at 2 seconds in the simulation when the target
lies within the emitter's field of view.

figure; imshow(snap.cdata);
title('Emitter and target detected by an ESM sensor');

1 Featured Examples

1-480

In the preceding figure, emissions are detected from both the emitter and the target, as the target
receives energy from the emitter and re-emits that waveform back into the scenario, causing it to be
detected by the ESM sensor as well.

Passive Detection of Monostatic Radars

Monostatic radars also emit waveforms into the scenario. Sometimes it is desirable to be able to
detect their emissions. To do this, you must model both the emitting and sensing portions of the radar
separately. The emitter generates the waveforms which become part of the scenario's RF emissions.
These waveforms can then be detected by other sensors, such as the ESM sensor presented in the
preceding section.

Reuse the same scenario from the preceding sections. For this scenario, attach a monostatic radar to
the platform at the top of the scenario (the second platform), and attach an ESM sensor to the
platform at the bottom of the scenario (the first platform). The middle platform remains a target with
no emitters or sensors attached to it.

restart(scene);

Create a monostatic radar by modeling both the emitting and sensing portions of the sensor. Use
radarEmitter to model the monostatic radar emitter. For this scenario, use 1 to indicate the
waveform type used by this radar, where perhaps 1 represents an LFM chirp with some predefined
parameters. The waveform type is an enumeration defined by the user to represent the different
kinds of waveforms simulated in the scenario. This enables emitters and sensors to know how to
process these waveforms to generate detections. For example, if an emitter has a waveform type of 1
and a sensor includes this type in its waveform list, then the sensor will know how to process the
emitter's emissions (e.g. using a matched filter) and will detect the emission and realize the
processing gain associated with that waveform.

% Create the emitter for the monostatic radar.
radarTx = radarEmitter(2, 'Sector', ...
 'UpdateRate', 12.5, ... % Hz
 'MountingAngles', [0 0 0], ... % [Z Y X] deg
 'FieldOfView', [2 10], ... % [az el] deg
 'CenterFrequency', 300e6, ... % Hz
 'Bandwidth', 3e6, ... % Hz
 'ProcessingGain', 50, ... % dB
 'WaveformType', 1) % Use 1 to indicate this radar's waveform

radarTx =
 radarEmitter with properties:

 EmitterIndex: 2
 UpdateRate: 12.5000
 ScanMode: 'Mechanical'

 MountingLocation: [0 0 0]
 MountingAngles: [0 0 0]

 FieldOfView: [2x1 double]
 MaxMechanicalScanRate: 75
 MechanicalScanLimits: [-45 45]
 MechanicalAngle: 0
 LookAngle: 0
 HasElevation: 0

 Simulating Passive Radar Sensors and Radar Interferences

1-481

 EIRP: 100
 CenterFrequency: 300000000
 Bandwidth: 3000000
 WaveformType: 1
 ProcessingGain: 50

Use radarDataGenerator to model the sensing portion of the radar which receives the RF
emissions in the scenario, identifies the emissions that correspond to the monostatic emitter's
waveform type, and generates detections from these received emissions. Emissions which do not
match the emitter's waveform type are treated as interference.

When using radarDataGenerator to model the sensing portion of a monostatic radar, set the
DetectionMode property of the sensor to Monostatic. This tells the sensor to use the emitter's
configuration when processing the received RF emissions. The EmissionsInputPort property must
also be set true to enable detections on radarEmission objects.

radarRx = radarDataGenerator(2, ...
 'DetectionMode', 'Monostatic', ...
 'EmissionsInputPort', true, ...
 'EmitterIndex', radarTx.EmitterIndex, ...
 'HasINS', true,...
 'DetectionCoordinates','Scenario')

radarRx =
 radarDataGenerator with properties:

 SensorIndex: 2
 EmitterIndex: 2
 DetectionMode: 'Monostatic'
 InterferenceInputPort: 0
 EmissionsInputPort: 1

 RangeLimits: [0 100000]

 FalseAlarmRate: 1.0000e-06

 TargetReportFormat: 'Clustered detections'

 Show all properties

% Attach to the radar emitter and sensor to the second platform.
platRadar = scene.Platforms{2};
platRadar.Emitters = radarTx;
platRadar.Sensors = radarRx;

Reuse the ESM sensor from the preceding section, but set the list of known waveform types for the
ESM sensor to include the waveform emitted by the radar. If the radar's waveform type is not known
to the ESM sensor, it will not be detected.

% Add the radar's waveform to the list of known waveform types for the ESM sensor.
esm.WaveformTypes = [0 1];

% Attach the ESM sensor to the first platform.
platESM = scene.Platforms{1};

1 Featured Examples

1-482

platESM.Emitters = {}; % Remove the emitter.
platESM.Sensors = esm;

Update the display to show both monostatic detections and ESM detections.

detPlotter = detectionPlotter(theaterDisplay,'DisplayName','Radar detections','MarkerFaceColor',radarColor);
platRadarPlotter.DisplayName = 'Monostatic radar';
platRadarPlotter.MarkerFaceColor = radarColor;
platEmitPlotter.DisplayName = 'ESM sensor';
platEmitPlotter.MarkerFaceColor = esmColor;
clearData(esmDetPlotter);
clearData(covPlotter);
covcon = coverageConfig(scene);
plotCoverage(covPlotter, covcon([1 3]) , [1 -2], {esmColor, radarColor});
title(ax,'Passive detection of a monostatic radar');

In the preceding figure, the radar is scanning an azimuth sector in front of its platform which
includes both the target platform as well as the platform carrying the ESM sensor. The radar will
generate detections for both of these platforms when its field of view (shown in blue) sweeps over
their location. However, when the radar's beam passes over the location of the ESM sensor, the ESM
sensor will detect the radar and will indicate its estimated position by drawing a line originating from
the sensor's location.

% Set the random seed for repeatable results.
rng(2018);

platforms = scene.Platforms;

 Simulating Passive Radar Sensors and Radar Interferences

1-483

numPlat = numel(platforms);

plotDets = {};
snap = [];
while advance(scene)

 % Emit the RF signal.
 [txEmiss, txConfigs] = emit(scene);

 % Reflect the emitted signal off of the platforms in the scenario.
 reflEmiss = propagate(scene, txEmiss);

 % Generate detections from the sensors.
 [dets, config] = detect(scene, reflEmiss, txConfigs);

 % Reset detections every time the radar completes a sector scan.
 if txConfigs(end).IsScanDone
 % Reset
 plotDets = dets;
 else
 % Buffer
 plotDets = [plotDets;dets];%#ok<AGROW>
 end

 % Update display with current platform positions, beam positions and detections.
 plotPlatform(platRadarPlotter, platRadar.pose.Position);
 plotPlatform(platEmitPlotter, platEmit.pose.Position);
 plotPlatform(platPlotter, scene.Platforms{3}.pose.Position);
 covcon = coverageConfig(scene);
 plotCoverage(covPlotter, covcon([1 3]) , [1 -2], {esmColor, radarColor});
 plotDetection(esmDetPlotter,plotDets);
 plotMonostaticDetection(detPlotter,plotDets);

 % Record the reflected detection at t = 5.6 sec
 snap = getSnap(ax, scene.SimulationTime, 5.6, snap);
 drawnow
end

1 Featured Examples

1-484

Detections from the monostatic radar modeled using radarEmitter and radarDataGenerator are
shown as filled, blue circles near the target and the platform equipped with the ESM sensor. The ESM
sensor is also able to detect the radar, as is indicated by the angle-only detection shown as a line
originating from the ESM sensor and passing near the radar platform.

figure; imshow(snap.cdata);
title('Radar and target detected by an ESM sensor');

 Simulating Passive Radar Sensors and Radar Interferences

1-485

Because of the high power (EIRP) of the radar's emissions, the emitted energy is reflected off of the
target towards the ESM platform as well. This results in the ESM sensor detecting the target
platform at times when the radar emitter's field of view sweeps past the target platform when the
target is still inside of the ESM sensor's field of view.

Summary

In this example, you learned how to simulate the impact of RF interference on a monostatic radar. You
also learned how to simulate passive sensors which can detect these interference sources as well as
the radar sensors in the scenario.

Supporting Functions

getSnap Records a snapshot of an axis at a given snap time.

function snap = getSnap(hAx, curTime, snapTime, prevSnap)
if ~isempty(prevSnap)
 snap = prevSnap;
elseif curTime >= snapTime && curTime < snapTime + 0.05
 hAx.Title.Visible = 'off';
 snap = getframe(hAx.Parent);
 hAx.Title.Visible = 'on';
else

1 Featured Examples

1-486

 snap = [];
end
end

plotMonostaticDetection Parses detections to plot only monostatic detections with a
detectionPlotter.

function plotMonostaticDetection(plotter, dets)
if ~isempty(dets)
 % Pass only monostatic detections to the detectionPlotter
 radarDetId = cellfun(@(x) x.SensorIndex == 2, dets);
 if any(radarDetId)
 % extract measurement positions for the monostatic radar
 radarDets = [dets{radarDetId}];
 meas = [radarDets.Measurement]';
 plotDetection(plotter,meas);
 end
end
end

 Simulating Passive Radar Sensors and Radar Interferences

1-487

Introduction to Micro-Doppler Effects
This example introduces the basic concept of a micro-Doppler effect in the radar return of a target
due to the rotation of that target. You can use the micro-Doppler signature to help identify the target.

Introduction

A moving target introduces a frequency shift in the radar return due to Doppler effect. However,
because most targets are not rigid bodies, there are often other vibrations and rotations in different
parts of the target in addition to the platform movement. For example, when a helicopter flies, its
blades rotate, or when a person walks, their arms swing naturally. These micro scale movements
produce additional Doppler shifts, referred to as micro-Doppler effects, which are useful in
identifying target features. This example shows two applications where micro-Doppler effects can be
helpful. In the first application, micro-Doppler signatures are used to determine the blade speed of a
helicopter. In the second application, the micro-Doppler signatures are used to identify a pedestrian
in an automotive radar return.

Estimating Blade Speed of A Helicopter

Consider a helicopter with four rotor blades. Assume the radar is located at the origin. Specify the
location of the helicopter as (500, 0, 500), which sets its distance away from the radar in meters and
a velocity of (60, 0, 0) m/s.

radarpos = [0;0;0];
radarvel = [0;0;0];

tgtinitpos = [500;0;500];
tgtvel = [60;0;0];
tgtmotion = phased.Platform('InitialPosition',tgtinitpos,'Velocity',tgtvel);

In this simulation, the helicopter is modeled by five scatterers: the rotation center and the tips of four
blades. The rotation center moves with the helicopter body. Each blade tip is 90 degrees apart from

1 Featured Examples

1-488

the tip of its neighboring blades. The blades are rotating at a constant speed of 4 revolutions per
second. The arm length of each blade is 6.5 meters.

Nblades = 4;
bladeang = (0:Nblades-1)*2*pi/Nblades;
bladelen = 6.5;
bladerate = deg2rad(4*360); % rps -> rad/sec

All four blade tips are assumed to have identical reflectivities while the reflectivity for the rotation
center is stronger.

c = 3e8;
fc = 5e9;
helicop = phased.RadarTarget('MeanRCS',[10 .1 .1 .1 .1],'PropagationSpeed',c,...
 'OperatingFrequency',fc);

Helicopter Echo Simulation

Assume the radar operates at 5 GHz with a simple pulse. The pulse repetition frequency is 20 kHz.
For simplicity, assume the signal propagates in free space.

fs = 1e6;
prf = 2e4;
lambda = c/fc;

wav = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',2e-6,'PRF',prf);
ura = phased.URA('Size',4,'ElementSpacing',lambda/2);
tx = phased.Transmitter;
rx = phased.ReceiverPreamp;
env = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
 'TwoWayPropagation',true,'SampleRate',fs);
txant = phased.Radiator('Sensor',ura,'PropagationSpeed',c,'OperatingFrequency',fc);
rxant = phased.Collector('Sensor',ura,'PropagationSpeed',c,'OperatingFrequency',fc);

At each pulse, the helicopter moves along its trajectory. Meanwhile, the blades keep rotating, and the
tips of the blades introduce additional displacement and angular speed.

NSampPerPulse = round(fs/prf);
Niter = 1e4;
y = complex(zeros(NSampPerPulse,Niter));
rng(2018);
for m = 1:Niter
 % update helicopter motion
 t = (m-1)/prf;
 [scatterpos,scattervel,scatterang] = helicopmotion(t,tgtmotion,bladeang,bladelen,bladerate);

 % simulate echo
 x = txant(tx(wav()),scatterang); % transmit
 xt = env(x,radarpos,scatterpos,radarvel,scattervel); % propagates to/from scatterers
 xt = helicop(xt); % reflect
 xr = rx(rxant(xt,scatterang)); % receive
 y(:,m) = sum(xr,2); % beamform
end

This figure shows the range-Doppler response using the first 128 pulses of the received signal. You
can see the display of three returns at the target range of approximately 700 meters.

rdresp = phased.RangeDopplerResponse('PropagationSpeed',c,'SampleRate',fs,...
 'DopplerFFTLengthSource','Property','DopplerFFTLength',128,'DopplerOutput','Speed',...

 Introduction to Micro-Doppler Effects

1-489

 'OperatingFrequency',fc);
mfcoeff = getMatchedFilter(wav);
plotResponse(rdresp,y(:,1:128),mfcoeff);
ylim([0 3000])

While the returns look as though they are from different targets, they are actually all from the same
target. The center return is from the rotation center, and is much stronger compared to the other two
returns. This intensity is because the reflection is stronger from the helicopter body when compared
to the blade tips. The plot shows a speed of -40 m/s for the rotation center. This value matches the
truth of the target radial speed.

tgtpos = scatterpos(:,1);
tgtvel = scattervel(:,1);
tgtvel_truth = radialspeed(tgtpos,tgtvel,radarpos,radarvel)

tgtvel_truth =

 -43.6435

The other two returns are from the tips of the blades when they approach or depart the target at
maximum speed. From the plot, the speeds corresponding to these two approach and depart
detections are about 75 m/s and -160 m/s, respectively.

maxbladetipvel = [bladelen*bladerate;0;0];
vtp = radialspeed(tgtpos,-maxbladetipvel+tgtvel,radarpos,radarvel)
vtn = radialspeed(tgtpos,maxbladetipvel+tgtvel,radarpos,radarvel)

1 Featured Examples

1-490

vtp =

 75.1853

vtn =

 -162.4723

You can associate all three detections to the same target via further processing, but that topic is
beyond the scope of this example.

Blade Return Micro-Doppler Analysis

The time-frequency representation of micro-Doppler effects can reveal more information. This code
constructs a time-frequency representation in the detected target range bin.

mf = phased.MatchedFilter('Coefficients',mfcoeff);
ymf = mf(y);
[~,ridx] = max(sum(abs(ymf),2)); % detection via peak finding along range
pspectrum(ymf(ridx,:),prf,'spectrogram')

The figure shows the micro-Doppler modulation caused by blade tips around a constant Doppler shift.
The image suggests that each blade tip introduces a sinusoid-like Doppler modulation. As noted in the
figure below, within each period of the sinusoid, there are three extra sinusoids appearing at equal
distance. This appearance suggests that the helicopter is equipped with four equally spaced blades.

 Introduction to Micro-Doppler Effects

1-491

hanno = helperAnnotateMicroDopplerSpectrogram(gcf);

In addition to the number of blades, the image also shows that the period of each sinusoid, Tr, is
about 250 ms. This value means that a blade returns to its original position after 250 ms. In this case,
the angular speed of the helicopter is about 4 revolutions per second, which matches the simulation
parameter.

Tp = 250e-3;
bladerate_est = 1/Tp

bladerate_est =

 4

This image also shows the tip velocity Vt, which can be derived from the maximum Doppler. The
maximum Doppler is about 4 kHz away from the constant Doppler introduced by the bulk movement.
Calculate the detected maximum tip velocity.

Vt_detect = dop2speed(4e3,c/fc)/2

Vt_detect =

 120

1 Featured Examples

1-492

This value is the maximum tip velocity along the radial direction. To obtain the correct maximum tip
velocity, the relative orientation must be taken into consideration. Because the blades are spinning in
a circle, the detection is not affected by the azimuth angle. Correct only the elevation angle for the
maximum tip velocity result.

doa = phased.MUSICEstimator2D('SensorArray',ura,'OperatingFrequency',fc,...
 'PropagationSpeed',c,'DOAOutputPort',true,'ElevationScanAngles',-90:90);
[~,ang_est] = doa(xr);
Vt_est = Vt_detect/cosd(ang_est(2))

Vt_est =

 164.0793

Based on the corrected maximum tip velocity and the blade-spinning rate, calculate the blade length.

bladelen_est = Vt_est/(bladerate_est*2*pi)

bladelen_est =

 6.5285

Note that the result matches the simulation parameter of 6.5 meters. Information such as number of
blades, blade length, and blade rotation rate can help identify the model of the helicopter.

 Introduction to Micro-Doppler Effects

1-493

Pedestrian Identification in Automotive Radar

Considering an ego car with an FMCW automotive radar system whose bandwidth is 250 MHz and
operates at 24 GHz.

bw = 250e6;
fs = bw;
fc = 24e9;
tm = 1e-6;
wav = phased.FMCWWaveform('SampleRate',fs,'SweepTime',tm,...
 'SweepBandwidth',bw);

The ego car is traveling along the road. Along the way, there is a car parked on the side of street and
a human is walking out behind the car. The scene is illustrated in the following diagram

1 Featured Examples

1-494

Based on this setup, if the ego car cannot identify that a pedestrian is present, an accident may occur.

egocar_pos = [0;0;0];
egocar_vel = [30*1600/3600;0;0];
egocar = phased.Platform('InitialPosition',egocar_pos,'Velocity',egocar_vel,...
 'OrientationAxesOutputPort',true);

parkedcar_pos = [39;-4;0];
parkedcar_vel = [0;0;0];
parkedcar = phased.Platform('InitialPosition',parkedcar_pos,'Velocity',parkedcar_vel,...
 'OrientationAxesOutputPort',true);

 Introduction to Micro-Doppler Effects

1-495

parkedcar_tgt = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc,'MeanRCS',10);

ped_pos = [40;-3;0];
ped_vel = [0;1;0];
ped_heading = 90;
ped_height = 1.8;
ped = phased.BackscatterPedestrian('InitialPosition',ped_pos,'InitialHeading',ped_heading,...
 'PropagationSpeed',c,'OperatingFrequency',fc,'Height',1.6,'WalkingSpeed',1);

chan_ped = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
 'TwoWayPropagation',true,'SampleRate',fs);
chan_pcar = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc,...
 'TwoWayPropagation',true,'SampleRate',fs);

tx = phased.Transmitter('PeakPower',1,'Gain',25);
rx = phased.ReceiverPreamp('Gain',25,'NoiseFigure',10);

Pedestrian Micro-Doppler Extraction

The following figure shows the range-Doppler map generated from the ego car's radar over time.
Because the parked car is a much stronger target than the pedestrian, the pedestrian is easily
shadowed by the parked car in the range-Doppler map. As a result, the map always shows a single
target.

This means that conventional processing cannot satisfy our needs under this situation.

1 Featured Examples

1-496

Micro-Doppler effect in time frequency domain can be a good candidate to identify if there is
pedestrian signature embedded in the radar signal. As an example, the following section simulates
the radar return for 2.5 seconds.

Tsamp = 0.001;
npulse = 2500;
xr = complex(zeros(round(fs*tm),npulse));
xr_ped = complex(zeros(round(fs*tm),npulse));
for m = 1:npulse
 [pos_ego,vel_ego,ax_ego] = egocar(Tsamp);
 [pos_pcar,vel_pcar,ax_pcar] = parkedcar(Tsamp);
 [pos_ped,vel_ped,ax_ped] = move(ped,Tsamp,ped_heading);
 [~,angrt_ped] = rangeangle(pos_ego,pos_ped,ax_ped);
 [~,angrt_pcar] = rangeangle(pos_ego,pos_pcar,ax_pcar);

 x = tx(wav());
 xt_ped = chan_ped(repmat(x,1,size(pos_ped,2)),pos_ego,pos_ped,vel_ego,vel_ped);
 xt_pcar = chan_pcar(x,pos_ego,pos_pcar,vel_ego,vel_pcar);
 xt_ped = reflect(ped,xt_ped,angrt_ped);
 xt_pcar = parkedcar_tgt(xt_pcar);
 xr_ped(:,m) = rx(xt_ped);
 xr(:,m) = rx(xt_ped+xt_pcar);
end

xd_ped = conj(dechirp(xr_ped,x));
xd = conj(dechirp(xr,x));

In the simulated signal, xd_ped contains only the pedestrian's return while xd contains the return
from both the pedestrian and the parked car. If we generate a spectrogram using only the return of
the pedestrian, we obtain a plot shown below.

clf;
spectrogram(sum(xd_ped),kaiser(128,10),120,256,1/Tsamp,'centered','yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

 Introduction to Micro-Doppler Effects

1-497

Note that the swing of arms and legs produces many parabolic curves in the time frequency domain
along the way. Therefore such features can be used to determine whether a pedestrian exists in the
scene.

However, when we generate a spectrogram directly from the total return, we get the following plot.

spectrogram(sum(xd),kaiser(128,10),120,256,1/Tsamp,'centered','yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

1 Featured Examples

1-498

What we observe is that the parked car's return continue dominating the return, even in the time
frequency domain. Therefore the time frequency response shows only the Doppler relative to the
parked car. The drop of the Doppler frequency is due to the ego car getting closer to the parked car
and the relative speed drops towards 0.

To see if there is a return hidden behind the strong return, we can use the singular value
decomposition. The following plot shows the distribution of the singular value of the dechirped
pulses.

[uxd,sxd,vxd] = svd(xd);
clf
plot(10*log10(diag(sxd)));
xlabel('Rank');
ylabel('Singular Values');
hold on;
plot([56 56],[-40 10],'r--');
plot([100 100],[-40 10],'r--');
plot([110 110],[-40 10],'r--');
text(25,-10,'A');
text(75,-10,'B');
text(105,-10,'C');
text(175,-10,'D');

 Introduction to Micro-Doppler Effects

1-499

From the curve, it is clear that there are approximately four regions. The region A represents the
most significant contribution to the signal, which is the parked car. The region D represents the
noise. Therefore, the region B and C are due to the mix of parked car return and the pedestrian
return. Because the return from the pedestrian is much weaker than the return from the parked car.
In region B, it can still be masked by the residue of the return from the parked car. Therefore, we
pick the region C to reconstruct the signal, and then plot the time frequency response again.

rk = 100:110;
xdr = uxd(:,rk)*sxd(rk,:)*vxd';
clf
spectrogram(sum(xdr),kaiser(128,10),120,256,1/Tsamp,'centered','yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

1 Featured Examples

1-500

With the return from the car successfully filtered, the micro-Doppler signature from the pedestrian
appears. Therefore, we can conclude that there is pedestrian in the scene and act accordingly to
avoid an accident.

Summary

This example introduces the basic concept of a micro-Doppler effect and shows its impact on the
target return. It also shows how to extract a micro-Doppler signature from the received I/Q signal and
then derive relevant target parameters from the micro-Doppler information.

References

[1] Chen, V. C., The Micro-Doppler Effect in Radar, Artech House, 2011

[2] Chen, V. C., F. Li, S.-S. Ho, and H. Wechsler, "Micro-Doppler Effect in Radar: Phenomenon, Model,
and Simulation Study", IEEE Transactions on Aerospace and Electronic Systems, Vol 42, No. 1,
January 2006

Utility Functions

Function helicopmotion models the motion of multiple scatterers of the helicopter.

function [scatterpos,scattervel,scatterang] = helicopmotion(...
 t,tgtmotion,BladeAng,ArmLength,BladeRate)

prf = 2e4;
radarpos = [0;0;0];

 Introduction to Micro-Doppler Effects

1-501

Nblades = size(BladeAng,2);

[tgtpos,tgtvel] = tgtmotion(1/prf);

RotAng = BladeRate*t;
scatterpos = [0 ArmLength*cos(RotAng+BladeAng);0 ArmLength*sin(RotAng+BladeAng);zeros(1,Nblades+1)]+tgtpos;
scattervel = [0 -BladeRate*ArmLength*sin(RotAng+BladeAng);...
 0 BladeRate*ArmLength*cos(RotAng+BladeAng);zeros(1,Nblades+1)]+tgtvel;

[~,scatterang] = rangeangle(scatterpos,radarpos);

end

1 Featured Examples

1-502

Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar

This example shows the design of a moving target indication (MTI) radar to mitigate clutter and
identify moving targets. For a radar system, clutter refers to the received echoes from environmental
scatters other than targets, such as land, sea or rain. Clutter echoes can be many orders of
magnitude larger than target echoes. An MTI radar exploits the relatively high Doppler frequencies of
moving targets to suppress clutter echoes, which usually have zero or very low Doppler frequencies.

A typical MTI radar uses a high pass filter to remove energy at low Doppler frequencies. Since the
frequency response of an FIR high pass filter is periodic, some energy at high Doppler frequencies is
also removed. Targets at those high Doppler frequencies thus will not be detectable by the radar. This
issue is called the blind speed problem. This example shows how to use a technique, called staggered
PRFs, to address the blind speed problem.

Construct a Radar System

First, define the components of a radar system. The focus of this example is on MTI processing, so
we'll use the radar system built in the example “Simulating Test Signals for a Radar Receiver”.
Readers are encouraged to explore the details of the radar system design through that example.
Change the antenna's height to 100 meters to simulate a radar mounted on top of a building. Notice
that the PRF in the system is approximately 30 kHz, which corresponds to a maximum unambiguous
range of 5 km.

load BasicMonostaticRadarExampleData;
sensorheight = 100;
sensormotion.InitialPosition = [0 0 sensorheight]';
prf = waveform.PRF;

Retrieve the sampling frequency, the operating frequency, and the propagation speed.

fs = waveform.SampleRate;
fc = radiator.OperatingFrequency;
wavespeed = radiator.PropagationSpeed;

In many MTI systems, especially low-end ones, the transmitter's power source is a magnetron. Thus,
the transmitter adds a random phase to each transmitted pulse. Hence, it is often necessary to
restore the coherence at the receiver. Such setup is referred to as coherent on receive. In these
systems, the receiver locks onto the random phases added by transmitter for each pulse. Then, the
receiver removes the phase impact from the received samples received within the corresponding
pulse interval. We can simulate a coherent on receive system by setting the transmitter and receiver
as following:

transmitter.CoherentOnTransmit = false;
transmitter.PhaseNoiseOutputPort = true;
receiver.PhaseNoiseInputPort = true;

Define Targets

Next, define two moving targets.

The first target is located at position [1600 0 1300]. Given the radar position shown in the preceding
sections, it has a range of 2 km from the radar. The velocity of the target is [100 80 0], corresponding
to a radial speed of -80 m/s relative to the radar. The target has a radar cross section of 25 square
meters.

 Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

1-503

https://www.mathworks.com/discovery/radar-system-design.html

The second target is located at position [2900 0 800], corresponding to a range of 3 km from the
radar. Set the speed of this target to a blind speed, where the target's Doppler signature is aliased to
the pulse repetition frequency. This setting prevents the MTI radar from detecting the target. We use
the dop2speed() function to calculate a blind speed which has a corresponding Doppler frequency
equal to the pulse repetition frequency.

wavelength = wavespeed/fc;
blindspd = dop2speed(prf,wavelength)/2; % half to compensate round trip

tgtpos = [[1600 0 1300]',[2900 0 800]'];
tgtvel = [[100 80 0]',[-blindspd 0 0]'];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);

tgtrcs = [25 25];
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

Clutter

The clutter signal was generated using the simplest clutter model, the constant gamma model, with
the gamma value set to -20 dB. Such a gamma value is typical for flatland clutter. Assume that the
clutter patches exist at all ranges, and that each patch has an azimuth width of 10 degrees. Also
assume that the main beam of the radar points horizontally. Note that the radar is not moving.

trgamma = surfacegamma('flatland');

clutter = constantGammaClutter('Sensor',antenna,...
 'PropagationSpeed',radiator.PropagationSpeed,...
 'OperatingFrequency',radiator.OperatingFrequency,...
 'SampleRate',waveform.SampleRate,'TransmitSignalInputPort',true,...
 'PRF',waveform.PRF,'Gamma',trgamma,'PlatformHeight',sensorheight,...
 'PlatformSpeed',0,'PlatformDirection',[0;0],...
 'MountingAngles',[0 0 0],'ClutterMaxRange',5000,...
 'ClutterAzimuthSpan',360,'PatchAzimuthSpan',10,...
 'SeedSource','Property','Seed',2011);

Simulate the Received Pulses and Matched Filter

Now we simulate 10 received pulses for the radar and targets defined earlier.

pulsenum = 10;

% Set the seed of the receiver to duplicate results
receiver.SeedSource = 'Property';
receiver.Seed = 2010;

rxPulse = helperMTISimulate(waveform,transmitter,receiver,...
 radiator,collector,sensormotion,...
 target,tgtmotion,clutter,pulsenum);

We then pass the received signal through a matched filter.

matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter('Coefficients',matchingcoeff);
mfiltOut = matchedfilter(rxPulse);

matchingdelay = size(matchingcoeff,1)-1;
mfiltOut = buffer(mfiltOut(matchingdelay+1:end),size(mfiltOut,1));

1 Featured Examples

1-504

Perform MTI Processing Using a Three-Pulse Canceller

MTI processing uses MTI filters to remove low frequency components in slow time sequences.
Because land clutter usually is not moving, removing low frequency components can effectively
suppress it. The three-pulse canceller is a popular and simple MTI filter. The canceller is an all-zero
FIR filter with filter coefficients [1 -2 1].

h = [1 -2 1];
mtiseq = filter(h,1,mfiltOut,[],2);

Use noncoherent pulse integration to combine the slow time sequences. Exclude the first two pulses
because they are in the transient period of the MTI filter.

mtiseq = pulsint(mtiseq(:,3:end));
% For comparison, also integrate the matched filter output
mfiltOut = pulsint(mfiltOut(:,3:end));

% Calculate the range for each fast time sample
fast_time_grid = (0:size(mfiltOut,1)-1)/fs;
rangeidx = wavespeed*fast_time_grid/2;

% Plot the received pulse energy again range
plot(rangeidx,pow2db(mfiltOut.^2),'r--',...
 rangeidx,pow2db(mtiseq.^2),'b-'); grid on;
title('Fast Time Sequences Using a Uniform PRF');
xlabel('Range (m)'); ylabel('Power (dB)');
legend('Before MTI filter','After MTI filter');

 Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

1-505

Recall that there are two targets (at 2 km and 3 km). In the case before MTI filtering, both targets are
buried in clutter returns. The peak at 100 m is the direct path return from the ground right below the
radar. Notice that the power is decreasing as the range increases, which is due to the signal
propagation loss.

After MTI filtering, most clutter returns are removed except for the direct path peak. The noise floor
is now no longer a function of range, so the noise is now receiver noise rather than clutter noise. This
change shows the clutter suppression capability of the three-pulse canceller. At the 2 km range, we
see a peak representing the first target. However, there is no peak at 3 km range to represent the
second target. The peak disappears because the three-pulse canceller suppresses the second target
which travels at the canceller's blind speed.

To better understand the blind speed problem, let us look at the frequency response of the three-
pulse canceller.

f = linspace(0,prf*9,1000);
hresp = freqz(h,1,f,prf);
plot(f/1000,20*log10(abs(hresp)));
grid on; xlabel('Doppler Frequency (kHz)'); ylabel('Magnitude (dB)');
title('Frequency Response of the Three-Pulse Canceller');

Notice the recurring nulls in the frequency response. The nulls correspond to the Doppler
frequencies of the blind speeds. Targets with these Doppler frequencies are cancelled by the three-
pulse canceller. The plot shows that the nulls occur at integer multiples of the PRF (approximately
30kHz, 60kHz,...). If we can remove these nulls or push them away from the Doppler frequency
region of the radar specifications, we can avoid the blind speed problem.

1 Featured Examples

1-506

Simulate the Received Pulses Using Staggered PRFs

One solution to the blind speed problem is to use a nonuniform PRF, or staggered PRFs. Adjacent
pulses are transmitted at different pulse repetition frequencies. Such configuration pushes the lower
bound of blind speeds to a much higher value. To illustrate this idea, we will use a two-staggered PRF,
and plot the frequency response of the three-pulse canceller.

Let us choose a second PRF at around 25kHz, which corresponds to a maximum unambiguous range
of 6 km.

prf = wavespeed./(2*[6000 5000]);

% Calculate the magnitude frequency response for the three-pulse canceller
pf1 = @(f)(1-2*exp(1j*2*pi/prf(1)*f)+exp(1j*2*pi*2/prf(1)*f));
pf2 = @(f)(1-2*exp(1j*2*pi/prf(2)*f)+exp(1j*2*pi*2/prf(2)*f));
sfq = (abs(pf1(f)).^2 + abs(pf2(f)).^2)/2;

% Plot the frequency response
hold on;
plot(f/1000,pow2db(sfq),'r--');
ylim([-50, 30]);
legend('Uniform PRF','2-staggered PRF');

From the plot of the staggered PRFs we can see the first blind speed corresponds to a Doppler
frequency of 150 kHz, five times larger than the uniform PRF case. Thus the target with the 30 kHz
Doppler frequency will not be suppressed.

 Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

1-507

Now, simulate the reflected signals from the targets using the staggered PRFs.

% Assign the new PRF
release(waveform);
waveform.PRF = prf;

release(clutter);
clutter.PRF = prf;

% Reset noise seed
release(receiver);
receiver.Seed = 2010;

% Reset platform position
reset(sensormotion);
reset(tgtmotion);

% Simulate target return
rxPulse = helperMTISimulate(waveform,transmitter,receiver,...
 radiator,collector,sensormotion,...
 target,tgtmotion,clutter,pulsenum);

Perform MTI Processing for Staggered PRFs

We process the pulses as before by first passing them through a matched filter and then integrating
the pulses noncoherently.

mfiltOut = matchedfilter(rxPulse);
% Use the same three-pulse canceller to suppress the clutter.
mtiseq = filter(h,1,mfiltOut,[],2);

% Noncoherent integration
mtiseq = pulsint(mtiseq(:,3:end));
mfiltOut = pulsint(mfiltOut(:,3:end));

% Calculate the range for each fast time sample
fast_time_grid = (0:size(mfiltOut,1)-1)/fs;
rangeidx = wavespeed*fast_time_grid/2;

% Plot the fast time sequences against range.
clf;
plot(rangeidx,pow2db(mfiltOut.^2),'r--',...
 rangeidx,pow2db(mtiseq.^2),'b-'); grid on;
title('Fast Time Sequences Using Staggered PRFs');
xlabel('Range (m)'); ylabel('Power (dB)');
legend('Before MTI filter','After MTI filter');

1 Featured Examples

1-508

The plot shows both targets are now detectable after MTI filtering, and the clutter is also removed.

Summary

With very simple operations, MTI processing can be effective at suppressing low speed clutter. A
uniform PRF waveform will miss targets at blind speeds, but this issue can be addressed by using
staggered PRFs. For clutters having a wide spectrum, the MTI processing could be poor. That type of
clutter can be suppressed using space-time adaptive processing. See the example “Introduction to
Space-Time Adaptive Processing” for details.

Appendix

Reference: Mark A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, 2005.

 Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

1-509

Simulating a Polarimetric Radar Return for Weather
Observation

This example shows how to simulate a polarimetric Doppler radar return that meets the requirements
of weather observations. Radar plays a critical role in weather observation, detection of hazards,
classification and quantification of precipitation, and forecasting. In addition, polarimetric radar
provides multiparameter measurements with unprecedented quality and information. This example
shows how to simulate a polarimetric Doppler radar that scans an area of distributed weather
targets. The simulation derives the radar parameters according to the well-known NEXRAD radar
specifications. After synthesizing the received pulses, radar spectral moment estimation and
polarimetric moment estimation are performed. The estimates are compared with NEXRAD ground
truth, from which error statistics are obtained and data quality is evaluated.

Radar Definition

A well-known weather radar is the Weather Surveillance Radar, 1988 Doppler (WSR-88D), also known
as NEXRAD, which is operated by the US National Weather Service, FAA and DoD. For more
information, see the NEXRAD Radar Operations Center website.

Radar system specifications are designed as follows.

max_range = 100e3; % Maximum unambiguous range (m)
range_res = 250; % Required range resolution (m)
pulnum = 32; % Number of pulses to process in an azimuth
fc = 2800e6; % Frequency (Hz)
prop_speed = physconst('LightSpeed'); % Propagation speed (m/s)
lambda = prop_speed/fc; % Wavelength (m)

To translate these requirements to radar parameters, we follow the process within the example
“Simulating Test Signals for a Radar Receiver”. In this example, for the sake of simplicity, load
precalculated radar parameters.

load NEXRAD_Parameters.mat

Antenna Pattern

As NEXRAD is polarimetric, modeling the polarimetric characteristics of the antenna and weather
targets is important. According to NEXRAD specifications, the antenna pattern has a beamwidth of
about 1 degree and first sidelobe below -30 dB.

azang = [-180:0.5:180];
elang = [-90:0.5:90];
% We synthesize a pattern using isotropic antenna elements and tapering the
% amplitude distribution to make it follow NEXRAD specifications.
magpattern = load('NEXRAD_pattern.mat');
phasepattern = zeros(size(magpattern.pat));
% The polarimetric antenna is assumed to have ideally matched horizontal
% and vertical polarization pattern.
antenna = phased.CustomAntennaElement('AzimuthAngles',azang,...
 'ElevationAngles',elang,...
 'HorizontalMagnitudePattern',magpattern.pat,...
 'VerticalMagnitudePattern',magpattern.pat,...
 'HorizontalPhasePattern',phasepattern,...
 'VerticalPhasePattern',phasepattern,...
 'SpecifyPolarizationPattern',true);

1 Featured Examples

1-510

https://www.roc.noaa.gov/WSR88D/Engineering/NEXRADTechInfo.aspx

clear magpattern
clear phasepattern

Plot the azimuth cut of the antenna pattern.

D = pattern(antenna,fc,azang,0);
P = polarpattern(azang,D,'TitleTop','Polar Pattern for Azimuth Cut (elevation angle = 0 degree)');
P.AntennaMetrics = 1;
removeAllCursors(P);

Associate the array with the radiator and collector.

radiator = phased.Radiator(...
 'Sensor',antenna,'Polarization','Dual',...
 'OperatingFrequency',fc);

collector = phased.Collector(...
 'Sensor',antenna,'Polarization','Dual',...
 'OperatingFrequency',fc);

Weather Target

Generally, weather radar data is categorized into three levels. Level-I data is raw time series I/Q data
as input to the signal processor in the Radar Data Acquisition unit. Level-II data consists of the radar
spectral moments (reflectivity, mean radial velocity, and spectrum width) and polarimetric moments
(differential reflectivity, correlation coefficient, and differential phase) output from the signal

 Simulating a Polarimetric Radar Return for Weather Observation

1-511

processor. Level-III data is the output product data of the radar product generator, such as
hydrometeor classification, storm total precipitation, and tornadic vortex signature.

In this example, Level-II data from KTLX NEXRAD radar at 20:08:11 UTC on May 20th, 2013 is used.
This data comes from an intense tornado that occurred in Moore, Oklahoma and is used to generate
mean radar cross section (RCS) of equivalent scattering centers. The data is available via FTP
download. It represents a volume scan that includes a series of 360-degree sweeps of the antenna at
predetermined elevation angles completed in a specified period of time. In the data file name
KTLX20130520_200811_V06, KTLX refers to the radar site name, 20130520_200811 refers to the
date and time when the data was collected, and V06 refers to the data format of version 6. In this
simulation, the lowest elevation cut (0.5 degree) is extracted from the volume scan data as an
example.

Read the Level-II data into the workspace. Store it in the nexrad structure array, which contains all
the radar moments as well as an azimuth field that specifies the azimuth angle for each radial data
point in the Cartesian coordinate system. For simplicity, load NEXRAD data that was transformed
from a compressed file to a MAT-file.

load NEXRAD_data.mat;

Define an area of interest (AOI) in terms of azimuth and range in Cartesian coordinates.

az1 = 96; % Starting azimuth angle (degree)
az2 = 105; % Ending azimuth angle (degree)
rg1 = 22750; % Starting range (m)
rg2 = 38750; % Ending range (m)
% NEXRAD has a blind range of 2000m.
blind_rg = 2000;
% We define the number of azimuth angles that weather targets occupy in the
% two dimensional plane.
num_az = 40;
% We define the number of range bins that weather targets occupy in each
% azimuth radial of the two dimensional plane.
num_bin = 150;
% Select AOI data and store it in _nexrad_aoi_ structure array, which
% contains all the radar moments, as well as starting and ending azimuth
% and range indices. And the number of available weather targets in space
% is returned as Ns.
[nexrad_aoi,Ns] = helperSelectAOI(nexrad,az1,az2,rg1,rg2,blind_rg,range_res,num_az,num_bin);

Because weather targets are polarimetric and distributed in a plane, they can be represented by
specifying scattering matrices at discrete azimuth angles. Weather target reflectivity is defined as the
mean backscattering cross section per unit volume. Based on the weather radar equation, weather
targets can be considered as a collection of small targets within each resolution volume. The overall
reflectivity can be transformed to the mean RCS and regarded as an equivalent scattering center. As
a result, each element in the scattering matrix is the square root of RCS in relevant polarization.

% Preallocate target position, velocity, RCS, azimuth, elevation, and radar
% scattering matrices.
tgtpos = zeros(3, Ns);
tgtvel = zeros(3, Ns);
RCSH = zeros(1,Ns);
RCSV = zeros(1,Ns);
azpatangs = [-180 180];
elpatangs = [-90 90];
shhpat = zeros(2,2,Ns);

1 Featured Examples

1-512

https://www.ncdc.noaa.gov/nexradinv/choosesite.jsp
https://www.ncdc.noaa.gov/nexradinv/choosesite.jsp

svvpat = zeros(2,2,Ns);
shvpat = zeros(2,2,Ns);
zz = 0;
% NEXRAD beamwidth is about 1 degree.
beamwidth = 1.0;
for ii = nexrad_aoi.rlow:nexrad_aoi.rup
 theta = nexrad.azimuth(ii);
 for jj = 1:num_bin
 if isnan(nexrad.ZH(ii,jj))==0
 zz = zz+1;
 rpos = (jj-1)*range_res + blind_rg;
 tpos = [rpos*cosd(theta);rpos*sind(theta);0];
 tgtpos(:,zz) = tpos;
 RCSH(zz) = helperdBZ2RCS(beamwidth,rpos,lambda,pulse_width,nexrad.ZH(ii,jj),prop_speed);
 shhpat(:,:,zz) = sqrt(RCSH(zz))*ones(2,2);
 RCSV(zz) = helperdBZ2RCS(beamwidth,rpos,lambda,pulse_width,nexrad.ZV(ii,jj),prop_speed);
 svvpat(:,:,zz) = sqrt(RCSV(zz))*ones(2,2);
 end
 end
end

tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);
target = phased.BackscatterRadarTarget('EnablePolarization',true,...
 'Model','Nonfluctuating','AzimuthAngles',azpatangs,...
 'ElevationAngles',elpatangs,'ShhPattern',shhpat,'ShvPattern',shvpat,...
 'SvvPattern',svvpat,'OperatingFrequency',fc);

Radar Pulse Synthesis

Generate a radar data cube using the defined radar system parameters. Within each resolution
volume, include the appropriate correlation to ensure the resulting I/Q data presents proper weather
signal statistical properties.

rxh_aoi = complex(zeros(nexrad_aoi.rgnum,nexrad_aoi.aznum));
rxv_aoi = complex(zeros(nexrad_aoi.rgnum,nexrad_aoi.aznum));
% The number of realization sequences
realiznum = 1000;
% The number of unusable range bins due to NEXRAD blind range
i0 = blind_rg/range_res;
% Rotate sensor platform to simulate NEXRAD scanning in azimuth
for kk = 1:nexrad_aoi.aznum

 axes = rotz(nexrad.azimuth(kk+nexrad_aoi.r1-1));
 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos,axes);

 % Form transmit beam for this scan angle and simulate propagation
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 % Adopt simultaneous transmission and reception mode as NEXRAD
 txsig = radiator(txsig,txsig,tgtang,axes);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets

 Simulating a Polarimetric Radar Return for Weather Observation

1-513

 ang_az = tgtang(1:2:end);
 ang_az = ang_az+(-1).^(double(ang_az>0))*180;
 tgtsig = target(txsig,[ang_az;zeros(size(ang_az))],axes);

 % Collect the target returns received at the sensor
 [rxsig_h,rxsig_v] = collector(tgtsig,tgtang,axes);
 rxh = receiver(rxsig_h,~(txstatus>0));
 rxv = receiver(rxsig_v,~(txstatus>0));

 % Matched filtering
 [rxh, mfgainh] = matchedfilter(rxh);
 [rxv, mfgainv] = matchedfilter(rxv);
 rxh = [rxh(matchingdelay+1:end);zeros(matchingdelay,1)];
 rxv = [rxv(matchingdelay+1:end);zeros(matchingdelay,1)];

 % Decimation
 rxh = rxh(1:2:end);
 rxv = rxv(1:2:end);

 % Discard blind range data and select AOI data
 rxh_aoi(:,kk) = rxh(nexrad_aoi.b1+i0:nexrad_aoi.b2+i0);
 rxv_aoi(:,kk) = rxv(nexrad_aoi.b1+i0:nexrad_aoi.b2+i0);
end

clear txsig
clear tgtsig

Weather Radar Moment Estimation

Using pulse pair processing, calculate all the radar moments from estimates of correlations, including
reflectivity, mean radial velocity, spectrum width, differential reflectivity, correlation coefficient, and
differential phase.

moment = helperWeatherMoment(rxh_aoi,rxv_aoi,nexrad_aoi,pulnum,realiznum,prt,lambda);

Simulation Result

Compare the simulation result with the NEXRAD ground truth. Evaluate the simulated data quality
using error statistics, a sector image, a range profile, and a scatter plot. Error statistics are
expressed as the bias and standard deviation of the estimated radar moments compared to the
NEXRAD Level-II data (truth fields).

Define the azimuth and range for plotting.

azimuth = nexrad.azimuth(nexrad_aoi.r1:nexrad_aoi.r2);
range = (nexrad_aoi.b1-1:nexrad_aoi.b2-1)*250 + 2000;

Reflectivity

Reflectivity, , is the zeroth moment of the Doppler spectrum and is related to liquid water content or
precipitation rate in the resolution volume. Because values of that are commonly encountered in
weather observations span many orders of magnitude, radar meteorologists use a logarithmic scale
given by as dBZ, where is in units of mm^6/m^3.

[Z_bias,Z_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'Z');

1 Featured Examples

1-514

 Simulating a Polarimetric Radar Return for Weather Observation

1-515

Radial Velocity

Radial velocity, , is the first moment of the power-normalized spectra, which reflects the air motion
toward or away from the radar.

[Vr_bias,Vr_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'Vr');

1 Featured Examples

1-516

 Simulating a Polarimetric Radar Return for Weather Observation

1-517

Spectrum Width

Spectrum width, , is the square root of the second moment of the normalized spectrum. The
spectrum width is a measure of the velocity dispersion, that is, shear or turbulence within the
resolution volume.

[sigmav_bias,sigmav_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'sigmav');

1 Featured Examples

1-518

 Simulating a Polarimetric Radar Return for Weather Observation

1-519

Differential Reflectivity

Differential reflectivity, , is estimated from the ratio of the power estimates for the horizontal and
vertical polarization signals. The differential reflectivity is useful in hydrometeor classification.

[ZDR_bias,ZDR_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'ZDR');

1 Featured Examples

1-520

 Simulating a Polarimetric Radar Return for Weather Observation

1-521

Correlation Coefficient

The correlation coefficient, , represents the consistency of the horizontal and vertical returned
power and phase for each pulse. The correlation coefficient plays an important role in determining
system performance and classifying radar echo types.

[Rhohv_bias,Rhohv_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'Rhohv');

1 Featured Examples

1-522

 Simulating a Polarimetric Radar Return for Weather Observation

1-523

Differential Phase

The differential phase, , is the difference in the phase delay of the returned pulse from the
horizontal and vertical polarizations. The differential phase provides information on the nature of the
scatterers that are being sampled.

[Phidp_bias,Phidp_std] = helperDataQuality(nexrad_aoi,moment,range,azimuth,'Phidp');

1 Featured Examples

1-524

 Simulating a Polarimetric Radar Return for Weather Observation

1-525

Error Statistics

Figures in previous section provide a visual qualitative measure of the simulation quality. This section
of the example shows the quantitative comparison of the estimates with NEXRAD specifications as
error statistics.

MomentName = {'Z';'Vr';'sigmav';'ZDR';'Rhohv';'Phidp'};
STDEV = [round(Z_std,2);round(Vr_std,2);round(sigmav_std,2);round(ZDR_std,2);round(Rhohv_std,3);round(Phidp_std,2)];
Specs = [1;1;1;0.2;0.01;2];
Unit = {'dB';'m/s';'m/s';'dB';'';'degree'};
T = table(MomentName,STDEV,Specs,Unit);
disp(T);

 MomentName STDEV Specs Unit
 __________ _____ _____ __________

 {'Z' } 0.5 1 {'dB' }
 {'Vr' } 0.01 1 {'m/s' }
 {'sigmav'} 0.14 1 {'m/s' }
 {'ZDR' } 0.06 0.2 {'dB' }
 {'Rhohv' } 0.006 0.01 {0x0 char}
 {'Phidp' } 0.16 2 {'degree'}

By comparison, all the radar moment estimation meets NEXRAD specifications, which indicates good
data quality.

1 Featured Examples

1-526

Summary

This example showed how to simulate the polarimetric Doppler radar return from an area of
distributed weather targets. Visual comparison and error statistics showed the estimated radar
moments met the NEXRAD ground truth specifications. With this example, you can further explore
the simulated time series data in other applications such as waveform design, system performance
study, and data quality evaluation for weather radar.

References

[1] Doviak, R and D. Zrnic. Doppler Radar and Weather Observations, 2nd Ed. New York: Dover, 2006.

[2] Zhang, G. Weather Radar Polarimetry. Boca Raton: CRC Press, 2016.

[3] Li, Z, S. Perera, Y. Zhang, G. Zhang, and R. Doviak. "Time-Domain System Modeling and
Applications for Multi-Function Array Radar Weather Measurements." 2018 IEEE Radar Conference
(RadarConf18), Oklahoma city, OK, 2018, pp. 1049-1054.

 Simulating a Polarimetric Radar Return for Weather Observation

1-527

Clutter and Jammer Mitigation with STAP
This example shows how to use Simulink® to suppress clutter and jammer interference from the
received pulses of a monostatic radar. It illustrates how to model clutter and jammer interference as
well as how to use the adaptive displaced phase center array (ADPCA) pulse canceller block in order
to suppress the interference. The ADPCA Canceller is one of several space-time adaptive processing
(STAP) blocks provided in the Phased Array System Toolbox™. For more information on modeling an
end-to-end monostatic radar in Simulink® please refer to the “Simulating Test Signals for a Radar
Receiver in Simulink” example. For an introduction to STAP please refer to the “Introduction to
Space-Time Adaptive Processing” example.

Structure of the Model

This example models a monostatic radar with a moving target and a stationary barrage jammer. The
jammer transmits interfering signals through free space to the radar. A 6-element uniform linear
antenna array (ULA) with back baffled elements then receives the reflected pulse from the target as
well as the jammer's interference. A clutter simulator's output is also added to the received signal
before being processed. After adding noise, the signal is buffered into a data cube. In this example
the cube is processed by the ADPCA Canceller at the target's estimated range, azimuth angle and
doppler shift. In practice the ADPCA Canceller will scan several ranges, azimuth angles and doppler
shifts since the speed and position of the target is unknown.

Several blocks in this example need to share the same sensor array configuration. This is done by
assigning a sensor array configuration object to a MATLAB variable and sharing this variable in the
Sensor Array tab of the block's dialog as will be shown later.

In addition to the blocks listed in the “Simulating Test Signals for a Radar Receiver in Simulink”
example, there are:

1 Featured Examples

1-528

• FreeSpace - Performs two-way propagation of the signal when two-way propagation is selected
on the block's dialog panel. This mode allows the use of one block instead of two to model the
transmitted and reflected propagation paths of the signal.

• Jammer - Generates a barrage jamming signal. This subsystem also includes a Platform to model
the speed and position of the jammer which are needed by the Freespace blocks. The position is
also needed to calculate the angle between the target and the jammer.

• Selector - Selects the target's angle from the Range Angle block. This angle is used by the
Narrowband Tx Array block.

• Constant Gamma Clutter - Generates clutter with a gamma value of -15 dB. Such a gamma
value can be used to model terrain covered by woods.

• Radar Platform - Updates the position and velocity of the radar.

STAP

• Buffer - Buffers 10 pulses of the received signal.
• Matrix to Cube - Reshapes the buffered signal into an MxQxN data cube. M is the number of

range bins in fast time (the number of samples in one pulse), Q is the number of antenna elements
and N is the number of buffered pulses. In this example the cube has a 200X6X10 dimensions.

• Value to Index - Calculates the index of the estimated target's range bin from the range value.
• ADPCA Canceller - Perform adaptive displaced phase center array (ADPCA) pulse cancelling

along the specified range bin. The antenna array configuration of the radar is shared using a
variable in the Sensor Array tab of the block's dialog. The output is the received pulse with the
clutter and jammer interference suppressed. The adaptive weights of the filter are also produced,
enabling them is optional.

 Clutter and Jammer Mitigation with STAP

1-529

• Angle Doppler Slicer - Slices the data cube along the dimension specified by the dialog
parameter. This example examines the angle-doppler slice of the cube at the estimated range.

• Visualization - This subsystems displays the clutter interference in the time domain, the angle
Doppler response of the received data, the output of the ADPCA Canceller as well as the weights.

Exploring the Example

Several dialog parameters of the model are calculated by the helper function helperslexSTAPParam.
To open the function from the model, click on Modify Simulation Parameters block. This
function is executed once when the model is loaded. It exports to the workspace a structure whose
fields are referenced by the dialogs. To modify any parameters, either change the values in the
structure at the command prompt or edit the helper function and rerun it to update the parameter
structure.

Results and Displays

Displays from different stages of the simulation are shown below. The first figure below shows how
the signal received at the antenna array is dominated by the clutter return. Because the radar is
located 1000 meters above the surface, the clutter returns from the ground start at 1000 meters.

The figure below shows the angle-Doppler response of the return for the estimated range bin. It
presents the clutter as a function of angle and Doppler. The clutter return looks like a diagonal line in
angle-Doppler space. Such a line is often referred to as clutter ridge. The received jammer signal is
white noise, spread over the entire Doppler spectrum at approximately 60 degrees.

1 Featured Examples

1-530

As you can see in the next figure, the weights of the ADPCA Canceller produce a deep null along the
clutter ridge and also in the direction of the jammer.

The figure below displays the return at the output of the ADPCA Canceller, clearly showing the
target's range at 1750 meters. The barrage jammer and clutter have been filtered out.

 Clutter and Jammer Mitigation with STAP

1-531

1 Featured Examples

1-532

Introduction to Space-Time Adaptive Processing
This example gives a brief introduction to space-time adaptive processing (STAP) techniques and
illustrates how to use Phased Array System Toolbox™ to apply STAP algorithms to the received
pulses. STAP is a technique used in airborne radar systems to suppress clutter and jammer
interference.

Introduction

In a ground moving target indicator (GMTI) system, an airborne radar collects the returned echo
from the moving target on the ground. However, the received signal contains not only the reflected
echo from the target, but also the returns from the illuminated ground surface. The return from the
ground is generally referred to as clutter.

The clutter return comes from all the areas illuminated by the radar beam, so it occupies all range
bins and all directions. The total clutter return is often much stronger than the returned signal echo,
which poses a great challenge to target detection. Clutter filtering, therefore, is a critical part of a
GMTI system.

In traditional MTI systems, clutter filtering often takes advantage of the fact that the ground does not
move. Thus, the clutter occupies the zero Doppler bin in the Doppler spectrum. This principle leads to
many Doppler-based clutter filtering techniques, such as pulse canceller. Interested readers can refer
to “Ground Clutter Mitigation with Moving Target Indication (MTI) Radar” on page 1-503 for a
detailed example of the pulse canceller. When the radar platform itself is also moving, such as in a
plane, the Doppler component from the ground return is no longer zero. In addition, the Doppler
components of clutter returns are angle dependent. In this case, the clutter return is likely to have
energy across the Doppler spectrum. Therefore, the clutter cannot be filtered only with respect to
Doppler frequency.

Jamming is another significant interference source that is often present in the received signal. The
simplest form of jamming is a barrage jammer, which is strong, continuous white noise directed
toward the radar receiver so that the receiver cannot easily detect the target return. The jammer is
usually at a specific location, and the jamming signal is therefore associated with a specific direction.
However, because of the white noise nature of the jammer, the received jamming signal occupies the
entire Doppler band.

STAP techniques filter the signal in both the angular and Doppler domains (thus, the name "space-
time adaptive processing") to suppress the clutter and jammer returns. In the following sections, we
simulate returns from target, clutter, and jammer and illustrate how STAP techniques filter the
interference from the received signal.

System Setup

We first define a radar system, starting from the system built in the example “Simulating Test Signals
for a Radar Receiver”.

load BasicMonostaticRadarExampleData.mat; % Load monostatic pulse radar

Antenna Definition

Assume that the antenna element has an isotropic response in the front hemisphere and all zeros in
the back hemisphere. The operating frequency range is set to 8 to 12 GHz to match the 10 GHz
operating frequency of the system.

 Introduction to Space-Time Adaptive Processing

1-533

antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e9 12e9],'BackBaffled',true); % Baffled Isotropic

Define a 6-element ULA with a custom element pattern. The element spacing is assumed to be one
half the wavelength of the waveform.

fc = radiator.OperatingFrequency;
c = radiator.PropagationSpeed;
lambda = c/fc;
ula = phased.ULA('Element',antenna,'NumElements',6,...
 'ElementSpacing', lambda/2);

pattern(ula,fc,'PropagationSpeed',c,'Type','powerdb')
title('6-element Baffled ULA Response Pattern')
view(60,50)

Radar Setup

Next, mount the antenna array on the radiator/collector. Then, define the radar motion. The radar
system is mounted on a plane that flies 1000 meters above the ground. The plane is flying along the
array axis of the ULA at a speed such that it travels a half element spacing of the array during one
pulse interval. (An explanation of such a setting is provided in the DPCA technique section that
follows.)

radiator.Sensor = ula;
collector.Sensor = ula;
sensormotion = phased.Platform('InitialPosition',[0; 0; 1000]);

1 Featured Examples

1-534

arrayAxis = [0; 1; 0];
prf = waveform.PRF;
vr = ula.ElementSpacing*prf; % in [m/s]
sensormotion.Velocity = vr/2*arrayAxis;

Target

Next, define a nonfluctuating target with a radar cross section of 1 square meter moving on the
ground.

target = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',1, ...
 'OperatingFrequency', fc);
tgtmotion = phased.Platform('InitialPosition',[1000; 1000; 0],...
 'Velocity',[30; 30; 0]);

Jammer

The target returns the desired signal; however, several interferences are also present in the received
signal. If Radar Toolbox is available, please set the varaible hasRadarToolbox to true to define a
simple barrage jammer with an effective radiated power of 100 watts. Otherwise, the simuolation will
use a saved jammer signal.

hasRadarToolbox = false;
Fs = waveform.SampleRate;
rngbin = c/2*(0:1/Fs:1/prf-1/Fs).';
if hasRadarToolbox
 jammer = barrageJammer('ERP',100);
 jammer.SamplesPerFrame = numel(rngbin);
 jammermotion = phased.Platform('InitialPosition',[1000; 1732; 1000]);
end

Clutter

In this example we simulate the clutter using the constant gamma model with a gamma value of -15
dB. Literature shows that such a gamma value can be used to model terrain covered by woods. For
each range, the clutter return can be thought of as a combination of the returns from many small
clutter patches on that range ring. Since the antenna is back baffled, the clutter contribution is only
from the front. To simplify the computation, use an azimuth width of 10 degrees for each patch.
Again, if Radar Toolbox is not available, the simulation will use a saved clutter signal.

if hasRadarToolbox
 mountingAng = [30,0,0];
 Rmax = 5000;
 Azcov = 120;
 clutter = constantGammaClutter('Sensor',ula,'SampleRate',Fs,...
 'Gamma',-15,'PlatformHeight',1000,...
 'OperatingFrequency',fc,...
 'PropagationSpeed',c,...
 'PRF',prf,...
 'TransmitERP',transmitter.PeakPower*db2pow(transmitter.Gain),...
 'PlatformSpeed',norm(sensormotion.Velocity),...
 'PlatformDirection',[90;0],...
 'MountingAngles',mountingAng,'ClutterAzimuthCenter', ...
 'ClutterMaxRange', Rmax,...
 'ClutterAzimuthSpan',Azcov,...
 'PatchAzimuthSpan',10,...
 'OutputFormat','Pulses');
end

 Introduction to Space-Time Adaptive Processing

1-535

Propagation Paths

Finally, create a free space environment to represent the target and jammer paths. Because we are
using a monostatic radar system, the target channel is set to simulate two-way propagation delays.
The jammer path computes only one-way propagation delays.

tgtchannel = phased.FreeSpace('TwoWayPropagation',true,'SampleRate',Fs,...
 'OperatingFrequency', fc);
jammerchannel = phased.FreeSpace('TwoWayPropagation',false,...
 'SampleRate',Fs,'OperatingFrequency', fc);

Simulation Loop

We are now ready to simulate the returns. Collect 10 pulses before processing. The seed of the
random number generator from the jammer model is set to a constant to get reproducible results.

numpulse = 10; % Number of pulses
tsig = zeros(size(rngbin,1), ula.NumElements, numpulse);
jsig = tsig; tjcsig = tsig; tcsig = tsig; csig = tsig;

if hasRadarToolbox
 jammer.SeedSource = 'Property';
 jammer.Seed = 5;
 clutter.SeedSource = 'Property';
 clutter.Seed = 5;
else
 load STAPIntroExampleData;
end

for m = 1:numpulse

 % Update sensor, target and calculate target angle as seen by the sensor
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);
 [~,tgtang] = rangeangle(tgtpos,sensorpos);

 % Update jammer and calculate the jammer angles as seen by the sensor
 if hasRadarToolbox
 [jampos,jamvel] = jammermotion(1/prf);
 [~,jamang] = rangeangle(jampos,sensorpos);
 end

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [pulse,txstatus] = transmitter(pulse);
 pulse = radiator(pulse,tgtang);
 pulse = tgtchannel(pulse,sensorpos,tgtpos,sensorvel,tgtvel);

 % Collect target returns at sensor
 pulse = target(pulse);
 tsig(:,:,m) = collector(pulse,tgtang);

 % Collect jammer and clutter signal at sensor
 if hasRadarToolbox
 jamsig = jammer();
 jamsig = jammerchannel(jamsig,jampos,sensorpos,jamvel,sensorvel);
 jsig(:,:,m) = collector(jamsig,jamang);

1 Featured Examples

1-536

 csig(:,:,m) = clutter();
 end

 % Receive collected signals
 tjcsig(:,:,m) = receiver(tsig(:,:,m)+jsig(:,:,m)+csig(:,:,m),...
 ~(txstatus>0)); % Target + jammer + clutter
 tcsig(:,:,m) = receiver(tsig(:,:,m)+csig(:,:,m),...
 ~(txstatus>0)); % Target + clutter
 tsig(:,:,m) = receiver(tsig(:,:,m),...
 ~(txstatus>0)); % Target echo only
end

True Target Range, Angle and Doppler

The target azimuth angle is 45 degrees, and the elevation angle is about -35.27 degrees.

tgtLocation = global2localcoord(tgtpos,'rs',sensorpos);
tgtAzAngle = tgtLocation(1)

tgtAzAngle = 44.9981

tgtElAngle = tgtLocation(2)

tgtElAngle = -35.2651

The target range is 1732 m.

tgtRng = tgtLocation(3)

tgtRng = 1.7320e+03

The target Doppler normalized frequency is about 0.21.

sp = radialspeed(tgtpos, tgtmotion.Velocity, ...
 sensorpos, sensormotion.Velocity);
tgtDp = 2*speed2dop(sp,lambda); % Round trip Doppler
tgtDp/prf

ans = 0.2116

The total received signal contains returns from the target, clutter and jammer combined. The signal
is a data cube with three dimensions (range bins x number of elements x number of pulses). Notice
that the clutter return dominates the total return and masks the target return. We cannot detect the
target (blue vertical line) without further processing at this stage.

ReceivePulse = tjcsig;
plot([tgtRng tgtRng],[0 0.01],rngbin,abs(ReceivePulse(:,:,1)));
xlabel('Range (m)'), ylabel('Magnitude');
title('Signals collected by the ULA within the first pulse interval')

 Introduction to Space-Time Adaptive Processing

1-537

Now, examine the returns in 2-D angle Doppler (or space-time) domain. In general, the response is
generated by scanning all ranges and azimuth angles for a given elevation angle. Because we know
exactly where the target is, we can calculate its range and elevation angle with respect to the
antenna array.

tgtCellIdx = val2ind(tgtRng,c/(2*Fs));
snapshot = shiftdim(ReceivePulse(tgtCellIdx,:,:)); % Remove singleton dim
angdopresp = phased.AngleDopplerResponse('SensorArray',ula,...
 'OperatingFrequency',fc, 'PropagationSpeed',c,...
 'PRF',prf, 'ElevationAngle',tgtElAngle);
plotResponse(angdopresp,snapshot,'NormalizeDoppler',true);
text(tgtAzAngle,tgtDp/prf,'+ Target')

1 Featured Examples

1-538

If we look at the angle Doppler response which is dominated by the clutter return, we see that the
clutter return occupies not only the zero Doppler, but also other Doppler bins. The Doppler of the
clutter return is also a function of the angle. The clutter return looks like a diagonal line in the entire
angle Doppler space. Such a line is often referred to as clutter ridge. The received jammer signal is
white noise, which spreads over the entire Doppler spectrum at a particular angle, around 60
degrees.

Clutter Suppression with a DPCA Canceller

The displaced phase center antenna (DPCA) algorithm is often considered to be the first STAP
algorithm. This algorithm uses the shifted aperture to compensate for the platform motion so that the
clutter return does not change from pulse to pulse. Thus, this algorithm can remove the clutter via a
simple subtraction of two consecutive pulses.

A DPCA canceller is often used on ULAs but requires special platform motion conditions. The
platform must move along the antenna's array axis and at a speed such that during one pulse interval,
the platform travels exactly half of the element spacing. The system used here is set up, as described
in earlier sections, to meet these conditions.

Assume that N is the number of ULA elements. The clutter return received at antenna 1 through
antenna N-1 during the first pulse is the same as the clutter return received at antenna 2 through
antenna N during the second pulse. By subtracting the pulses received at these two subarrays during
the two pulse intervals, the clutter can be cancelled out. The cost of this method is an aperture that is
one element smaller than the original array.

 Introduction to Space-Time Adaptive Processing

1-539

Now, define a DPCA canceller. The algorithm may need to search through all combinations of angle
and Doppler to locate a target, but for the example, because we know exactly where the target is, we
can direct our processor to that point.

rxmainlobedir = [0; 0];
stapdpca = phased.DPCACanceller('SensorArray',ula,'PRF',prf,...
 'PropagationSpeed',c,'OperatingFrequency',fc,...
 'Direction',rxmainlobedir,'Doppler',tgtDp,...
 'WeightsOutputPort',true)

stapdpca =
 phased.DPCACanceller with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 1.0000e+10
 PRFSource: 'Property'
 PRF: 2.9979e+04
 DirectionSource: 'Property'
 Direction: [2x1 double]
 NumPhaseShifterBits: 0
 DopplerSource: 'Property'
 Doppler: 6.3429e+03
 WeightsOutputPort: true
 PreDopplerOutput: false

First, apply the DPCA canceller to both the target return and the clutter return.

ReceivePulse = tcsig;
[y,w] = stapdpca(ReceivePulse,tgtCellIdx);

The processed data combines all information in space and across the pulses to become a single pulse.
Next, examine the processed signal in the time domain.

plot([tgtRng tgtRng],[0 1.2e-5],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('DPCA Canceller Output (no Jammer)')

1 Featured Examples

1-540

The signal now is clearly distinguishable from the noise and the clutter has been filtered out. From
the angle Doppler response of the DPCA processor weights below, we can also see that the weights
produce a deep null along the clutter ridge.

angdopresp.ElevationAngle = 0;
plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('DPCA Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

1-541

Although the results obtained by DPCA are very good, the radar platform has to satisfy very strict
requirements in its movement to use this technique. Also, the DPCA technique cannot suppress the
jammer interference.

Applying DPCA processing to the total signal produces the result shown in the following figure. We
can see that DPCA cannot filter the jammer from the signal. The resulting angle Doppler pattern of
the weights is the same as before. Thus, the processor cannot adapt to the newly added jammer
interference.

ReceivePulse = tjcsig;
[y,w] = stapdpca(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 8e-4],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('DPCA Canceller Output (with Jammer)')

1 Featured Examples

1-542

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('DPCA Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

1-543

Clutter and Jammer Suppression with an SMI Beamformer

To suppress the clutter and jammer simultaneously, we need a more sophisticated algorithm. The
optimum receiver weights, when the interference is Gaussian-distributed, are given by [1]

w = kR−1s

where k is a scalar factor, R is the space-time covariance matrix of the interference signal, and s is
the desired space-time steering vector. The exact information of R is often unavailable, so we will use
the sample matrix inversion (SMI) algorithm. The algorithm estimates R from training-cell samples
and then uses it in the aforementioned equation.

Now, define an SMI beamformer and apply it to the signal. In addition to the information needed in
DPCA, the SMI beamformer needs to know the number of guard cells and the number of training
cells. The algorithm uses the samples in the training cells to estimate the interference. Thus, we
should not use the cells that are close to the target cell for the estimates because they may contain
some target information, i.e., we should define guard cells. The number of guard cells must be an
even number to be split equally in front of and behind the target cell. The number of training cells
also must be an even number and split equally in front of and behind the target. Normally, the larger
the number of training cells, the better the interference estimate.

tgtAngle = [tgtAzAngle; tgtElAngle];
stapsmi = phased.STAPSMIBeamformer('SensorArray', ula, 'PRF', prf, ...
 'PropagationSpeed', c, 'OperatingFrequency', fc, ...
 'Direction', tgtAngle, 'Doppler', tgtDp, ...

1 Featured Examples

1-544

 'WeightsOutputPort', true,...
 'NumGuardCells', 4, 'NumTrainingCells', 100)

stapsmi =
 phased.STAPSMIBeamformer with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 1.0000e+10
 PRFSource: 'Property'
 PRF: 2.9979e+04
 DirectionSource: 'Property'
 Direction: [2x1 double]
 NumPhaseShifterBits: 0
 DopplerSource: 'Property'
 Doppler: 6.3429e+03
 NumGuardCells: 4
 NumTrainingCells: 100
 WeightsOutputPort: true

[y,w] = stapsmi(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 2e-6],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('SMI Beamformer Output (with Jammer)')

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('SMI Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

1-545

The result shows that an SMI beamformer can distinguish signals from both the clutter and the
jammer. The angle Doppler pattern of the SMI weights shows a deep null along the jammer direction.

SMI provides the maximum degrees of freedom, and hence, the maximum gain among all STAP
algorithms. It is often used as a baseline for comparing different STAP algorithms.

Reducing the Computation Cost with an ADPCA Canceller

Although SMI is the optimum STAP algorithm, it has several innate drawbacks, including a high
computation cost because it uses the full dimension data of each cell. More importantly, SMI requires
a stationary environment across many pulses. This kind of environment is not often found in real
applications. Therefore, many reduced dimension STAP algorithms have been proposed.

An adaptive DPCA (ADPCA) canceller filters out the clutter in the same manner as DPCA, but it also
has the capability to suppress the jammer as it estimates the interference covariance matrix using
two consecutive pulses. Because there are only two pulses involved, the computation is greatly
reduced. In addition, because the algorithm is adapted to the interference, it can also tolerate some
motion disturbance.

Now, define an ADPCA canceller, and then apply it to the received signal.

stapadpca = phased.ADPCACanceller('SensorArray', ula, 'PRF', prf, ...
 'PropagationSpeed', c, 'OperatingFrequency', fc, ...
 'Direction', rxmainlobedir, 'Doppler', tgtDp, ...
 'WeightsOutputPort', true,...
 'NumGuardCells', 4, 'NumTrainingCells', 100)

1 Featured Examples

1-546

stapadpca =
 phased.ADPCACanceller with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 1.0000e+10
 PRFSource: 'Property'
 PRF: 2.9979e+04
 DirectionSource: 'Property'
 Direction: [2x1 double]
 NumPhaseShifterBits: 0
 DopplerSource: 'Property'
 Doppler: 6.3429e+03
 NumGuardCells: 4
 NumTrainingCells: 100
 WeightsOutputPort: true
 PreDopplerOutput: false

[y,w] = stapadpca(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 2e-6],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('ADPCA Canceller Output (with Jammer)')

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('ADPCA Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

1-547

The time domain plot shows that the signal is successfully recovered. The angle Doppler response of
the ADPCA weights is similar to the one produced by the SMI weights.

Summary

This example presented a brief introduction to space-time adaptive processing and illustrated how to
use different STAP algorithms, namely, SMI, DPCA, and ADPCA, to suppress clutter and jammer
interference in the received pulses.

Reference

[1] J. R. Guerci, Space-Time Adaptive Processing for Radar, Artech House, 2003

1 Featured Examples

1-548

Acceleration of Clutter Simulation Using GPU and Code
Generation

This example shows how to simulate clutter on a graphical processing unit (GPU) or through code
generation (MEX) instead of the MATLAB interpreter. The example applies the sample matrix
inversion (SMI) algorithm, one of the popular space time adaptive processing (STAP) techniques, to
the signal received by an airborne radar with a 6-element uniform linear array (ULA). The example
focuses on comparing the performance of clutter simulation between GPU, code generation and the
MATLAB interpreter. Interested readers can find details of the simulation and the algorithm in the
example “Introduction to Space-Time Adaptive Processing”.

The full functionality of this example requires Parallel Computing Toolbox™ and MATLAB Coder™.

Clutter Simulation

Radar system engineers often need to simulate the clutter return to test signal processing algorithms,
such as STAP algorithms. However, generating a high fidelity clutter return involves many steps and
therefore is often computationally expensive. For example, constantGammaClutter simulates the
clutter using the following steps:

1 Divide the entire terrain into small clutter patches. The size of the patch depends on the azimuth
patch span and the range resolution.

2 For each patch, calculate its corresponding parameters, such as the random return, the grazing
angle, and the antenna array gain.

3 Combine returns from all clutter patches to generate the total clutter return.

The number of clutter patches depends on the terrain coverage, but it is usually in the range of
thousands to millions. In addition, all steps above need to be performed for each pulse (assuming a
pulsed radar is used). Therefore, clutter simulation is often the tall pole in a system simulation.

To improve the speed of the clutter simulation, one can take advantage of parallel computing. Note
that the clutter return from later pulses could depend on the signal generated in earlier pulses, so
certain parallel solutions offered by MATLAB, such as parfor, are not always applicable. However,
because the computation at each patch is independent of the computations at other patches, it is
suitable for GPU acceleration.

If you have a supported GPU and have access to Parallel Computing Toolbox, then you can take
advantage of the GPU in generating the clutter return by using gpuConstantGammaClutter instead
of constantGammaClutter. In most cases, using a gpuConstantGammaClutter System object is
the only change you need to make.

If you have access to MATLAB Coder, you can also speed up clutter simulation by generating C code
for constantGammaClutter, compiling it and running the compiled version. When running in code
generation mode, this example compiles stapclutter using the codegen command:

 codegen('stapclutter','-args',...
 {coder.Constant(maxRange),...
 coder.Constant(patchAzSpan)});

All property values of constantGammaClutter have to be passed as constant values. The codegen
command will generate the mex file, stapclutter_mex, which will be called in the loop.

 Acceleration of Clutter Simulation Using GPU and Code Generation

1-549

Comparing Clutter Simulation Times

To compare the clutter simulation performance between the MATLAB interpreter, code generation
and a GPU, launch the following GUI by typing stapcpugpu in the MATLAB command line. The
launched GUI is shown in the following figure:

The left side of the GUI contains four plots, showing the raw received signal, the angle-Doppler
response of the received signal, the processed signal, and the angle-Doppler response of the STAP
processing weights. Again, the details can be found in the example “Introduction to Space-Time
Adaptive Processing”. On the right side of the GUI, you control the number of clutter patches by
modifying the clutter patch span in the azimuth direction (in degrees) and maximum clutter range (in
km). You can then click the Start button to start the simulation, which simulates 5 coherent
processing intervals (CPI) where each CPI contains 10 pulses. The processed signal and the angle-
Doppler responses are updated once every CPI.

Next section shows timing for different simulation runs. In these simulations, each pulse consists of
200 range samples with a range resolution of 50 m. Combinations of the clutter patch span and the
maximum clutter range result in various number of total clutter patches. For example, a clutter patch

1 Featured Examples

1-550

span of 10 degrees and a maximum clutter range of 5 km implies 3600 clutter patches. The
simulations are carried out on the following system configurations:

• CPU: Xeon X5650, 2.66 GHz, 24 GB memory
• GPU: Tesla C2075, 6 GB memory

The timing results are shown in the following figure.

helperCPUGPUResultPlot

From the figure, you can see that in general the GPU improves the simulation speed by dozens of
times, sometimes even hundred of times. Two interesting observations are:

• When the number of clutter patches are small, as long as the data can be fit into the GPU memory,
the GPU's performance is almost constant. The same is not true for the MATLAB interpreter.

• Once the number of clutter patches gets large, the data can no longer be fit into the GPU memory.
Therefore, the speed up provided by GPU over the MATLAB interpreter starts to decrease.
However, for close to ten millions of clutter patches, the GPU still provides an acceleration of over
50 times.

Simulation speed improvement due to code generation is less than the GPU speed improvement, but
is still significant. Code generation for constantGammaClutter pre-calculates the collected clutter
as an array of constant values. For larger number of clutter patches the size of the array becomes too
big, thus reducing the speed improvement due to the overhead of memory management. Code
generation requires access to MATLAB Coder but requires no special hardware.

 Acceleration of Clutter Simulation Using GPU and Code Generation

1-551

Other Simulation Timing Results

Even though the simulation used in this example calculates millions of clutter patches, the resulting
data cube has a size of 200x6x10, indicating only 200 range samples within each pulse, 6 channels,
and 10 pulses. This data cube is small compared to real problems. This example chooses these
parameters to show the benefit you can get from using a GPU or code generation while ensuring that
the example runs within a reasonable time in the MATLAB interpreter. Some simulations with larger
data cube size yield the following results:

• 45-fold acceleration using a GPU for a simulation that generates 50 pulses for a 50-element ULA
with 5000 range samples in each pulse, i.e., a 5000x50x50 data cube. The range resolution is 10
m. The radar covers a total azimuth of 60 degrees, with 1 degree in each clutter patch. The
maximum clutter range is 50 km. The total number of clutter patches is 305,000.

• 60-fold acceleration using a GPU for a simulation like the one above, except with 180-degree
azimuth coverage and a maximum clutter range equal to the horizon range (about 130 km). In this
case, the total number of clutter patches is 2,356,801.

Summary

This example compares the performance achieved by simulating clutter return using either the
MATLAB interpreter, a GPU or code generation. The result indicates that the GPU and code
generation offer big speed improvements over the MATLAB interpreter.

1 Featured Examples

1-552

Modeling Target Radar Cross Section
This example shows how to model radar targets with increasing levels of fidelity. The example
introduces the concept of radar cross sections (RCS) for simple point targets and extends it to more
complicated cases of targets with multiple scattering centers. It also discusses how to model
fluctuations of the RCS over time and briefly considers the case of polarized signals.

Introduction

A radar system relies on target reflection or scattering to detect and identify targets. The more
strongly a target reflects, the greater the returned echo at the radar receiver, resulting in a higher
signal-to-noise ratio (SNR) and likelier detection. In radar systems, the amount of energy reflected
from a target is determined by the radar cross section (RCS), defined as

where represents the RCS, is the distance between the radar and the target, is the field
strength of the signal reflected from the target, and is the field strength of the signal incident on
the target. In general, targets scatter energy in all directions and the RCS is a function of the incident
angle, the scattering angle, and the signal frequency. RCS depends on the shape of the target and the
materials from which it is constructed. Common units used for RCS include square meters or dBsm.

This example focuses on narrowband monostatic radar systems, when the transmitter and receiver
are co-located. The incident and scattered angles are equal and the RCS is a function only of the
incident angle. This is the backscattered case. For a narrowband radar, the signal bandwidth is small
compared to the operating frequency and is therefore considered to be constant.

RCS of a Simple Point Target

The simplest target model is an isotropic scatterer. An example of an isotropic scatterer is a metallic
sphere of uniform density. In this case, the reflected energy is independent of the incident angle. An
isotropic scatterer can often serve as a first order approximation of a more complex point target that
is distant from the radar. For example, a pedestrian can be approximated by an isotropic scatterer
with a 1 square meter RCS.

c = 3e8;
fc = 3e8;
pedestrian = phased.RadarTarget('MeanRCS',1,'PropagationSpeed',c,...
 'OperatingFrequency',fc)

pedestrian =

 phased.RadarTarget with properties:

 EnablePolarization: false
 MeanRCSSource: 'Property'
 MeanRCS: 1
 Model: 'Nonfluctuating'
 PropagationSpeed: 300000000
 OperatingFrequency: 300000000

 Modeling Target Radar Cross Section

1-553

where c is the propagation speed and fc is the operating frequency of the radar system. The
scattered signal from a unit input signal can then be computed as

x = 1;
ped_echo = pedestrian(x)

ped_echo =

 3.5449

where x is the incident signal. The relation between the incident and the reflected signal can be
expressed as where

 represents the dimensionless gain that results from the target reflection. is the wavelength
corresponding to the system's operating frequency.

RCS of Complex Targets

For targets with more complex shapes, reflections can non longer be considered the same across all
directions. The RCS varies with the incident angles (also known as aspect angles). Aspect-dependent
RCS patterns can be measured or modeled just as you would antenna radiation patterns. The result of
such measurements or models is a table of RCS values as a function of azimuth and elevation angles
in the target's local coordinate system.

The example below first computes the RCS pattern of a cylindrical target, with a radius of 1 meter
and a height of 10 meters, as a function of azimuth and elevation angles.

1 Featured Examples

1-554

[cylrcs,az,el] = rcscylinder(1,1,10,c,fc);

Because the cylinder is symmetric around the z axis, there is no azimuth-angle dependency. RCS
values vary only with elevation angle.

helperTargetRCSPatternPlot(az,el,cylrcs);
title('RCS Pattern of Cylinder');

 Modeling Target Radar Cross Section

1-555

The pattern in the elevation cut looks like

plot(el,pow2db(cylrcs));
grid; axis tight; ylim([-30 30]);
xlabel('Elevation Angles (degrees)');
ylabel('RCS (dBsm)');
title('RCS Pattern for Cylinder');

1 Featured Examples

1-556

The aspect-dependent RCS patterns can then imported into a phased.BackscatterRadarTarget
object.

cylindricalTarget = phased.BackscatterRadarTarget('PropagationSpeed',c,...
 'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,...
 'RCSPattern',cylrcs)

cylindricalTarget =

 phased.BackscatterRadarTarget with properties:

 EnablePolarization: false
 AzimuthAngles: [1x361 double]
 ElevationAngles: [1x181 double]
 RCSPattern: [181x361 double]
 Model: 'Nonfluctuating'
 PropagationSpeed: 300000000
 OperatingFrequency: 300000000

Finally, generate the target reflection. Assume three equal signals are reflected from the target at
three different aspect angles. The first two angles have the same elevation angle but with different
azimuth angles. The last has a different elevation angle from the first two.

x = [1 1 1]; % 3 unit signals
ang = [0 30 30;0 0 30]; % 3 directions
cyl_echo = cylindricalTarget(x,ang)

 Modeling Target Radar Cross Section

1-557

cyl_echo =

 88.8577 88.8577 1.3161

One can verify that there is no azimuth angle dependence because the first two outputs are the same.

The number of target shapes for which analytically-derived RCS patterns exist are few. For more
complicated shapes and materials, computational electromagnetics approaches, such as method of
moments (MoM), or finite element analysis (FEM), can be used to accurately predict the RCS pattern.
A more detailed discussion of these techniques is available in [1]. You can use the output of these
computations as input to the phased.BackscatterRadarTarget System object™ as was done in
the cylinder example before.

RCS of Extended Targets with Multiple Scatterers

Although computational electromagnetic approaches can provide accurate RCS predictions, they
often require a significant amount of computation and are not suitable for real-time simulations. An
alternative approach for describing a complex targets is to model it as a collection of simple
scatterers. The RCS pattern of the complex target can then be derived from the RCS patterns of the
simple scatterer as [1]

where is the RCS of the target, is the RCS of the th scatterer, and is the relative phase of the
 th scatterer. A multi-scatterer target behaves much like an antenna array.

The next section shows how to model a target consisting of four scatterers. The scatterers are located
at the four vertices of a square. Each scatterer is a cylindrical point target as derived in the previous
section. Without loss of generality, the square is placed in the xy -plane. The side length of the square
is 0.5 meter.

1 Featured Examples

1-558

First, define the positions of the scatterers.

scatpos = [-0.5 -0.5 0.5 0.5;0.5 -0.5 0.5 -0.5;0 0 0 0];

If the target is in the far field of the transmitter, the incident angle for each component scatterer is
the same. Then, the total RCS pattern can be computed as

naz = numel(az);
nel = numel(el);
extrcs = zeros(nel,naz);
for m = 1:nel
 sv = steervec(scatpos,[az;el(m)*ones(1,naz)]);
 % sv is squared due to round trip in a monostatic scenario
 extrcs(m,:) = abs(sqrt(cylrcs(m,:)).*sum(sv.^2)).^2;
end

The total RCS pattern then looks like

helperTargetRCSPatternPlot(az,el,extrcs);
title('RCS Pattern of Extended Target with 4 Scatterers');

 Modeling Target Radar Cross Section

1-559

This pattern can then be used in a phased.BackscatterRadarTarget object to compute the
reflected signal. The results verify that the reflected signal depends on both azimuth and elevation
angles.

extendedTarget = phased.BackscatterRadarTarget('PropagationSpeed',c,...
 'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,...
 'RCSPattern',extrcs);

ext_echo = extendedTarget(x,ang)

ext_echo =

 355.4306 236.7633 0.0000

Wideband RCS of Extended Targets with Multiple Scatterers

Wideband radar systems are typically defined as having a bandwidth greater than 5% of their center
frequency. In addition to improved range resolution, wideband systems also offer improved target
detection. One way in which wideband systems improve detection performance is by filling in fades in
a target's RCS pattern. This can be demonstrated by revisiting the extended target comprised of 4
cylindrical scatterers used in the preceding section. The modeled narrowband RCS swept across
various target aspects is shown as

sweepaz = -90:90; % Azimuthal sweep across target
sweepel = 0;

1 Featured Examples

1-560

[elg,azg] = meshgrid(sweepel,sweepaz);
sweepang = [azg(:)';elg(:)'];
x = ones(1,size(sweepang,2)); % unit signals

release(extendedTarget);
extNarrowbandSweep = extendedTarget(x,sweepang);

clf;
plot(sweepaz,pow2db(extNarrowbandSweep));
grid on; axis tight;
xlabel('Azimuth Angles (degrees)');
ylabel('RCS (dBsm)');
title(['RCS Pattern at 0^o Elevation ',...
 'for Extended Target with 4 Scatterers']);

Returns from the multiple cylinders in the extended target model coherently combine, creating deep
fades between 40 and 50 degrees. These fades can cause the target to not be detected by the radar
sensor.

Next, the RCS pattern for a wideband system operating at the same center frequency will be
examined. The bandwidth for this system will be set to 10% of the center frequency

bw = 0.10*fc; % Bandwidth is greater-than 5% of center frequency
fs = 2*bw;

A wideband RCS model is created as was previously done for the narrowband extended target. Often,
RCS models are generated offline using either simulation tools or range measurements and are then

 Modeling Target Radar Cross Section

1-561

provided to radar engineers for use in their system models. Here, it is assumed that the provided RCS
model has been sampled at 1MHz intervals on either side of the radar's center frequency.

modelFreq = (-80e6:1e6:80e6)+fc;
[modelCylRCS,modelAz,modelEl] = helperCylinderRCSPattern(c,modelFreq);

The contributions from the various scattering centers are modeled as before. It is important to note
that this approximation assumes that all of the target's scattering centers fall within the same range
resolution bin, which is true for this example.

nf = numel(modelFreq);
naz = numel(modelAz);
nel = numel(modelEl);
modelExtRCS = zeros(nel,naz,nf);
for k = 1:nf
 for m = 1:nel
 pos = scatpos*modelFreq(k)/fc;
 sv = steervec(pos,[modelAz;modelEl(m)*ones(1,naz)]);
 % sv is squared due to round trip in a monostatic scenario
 modelExtRCS(m,:,k) = abs(sqrt(modelCylRCS(m,:,k)).*sum(sv.^2)).^2;
 end
end

The wideband RCS target model is now generated, using the RCS patterns that were just computed.

widebandExtendedTarget = phased.WidebandBackscatterRadarTarget(...
 'PropagationSpeed',c,'OperatingFrequency',fc,'SampleRate',fs,...
 'AzimuthAngles',modelAz,'ElevationAngles',modelEl,...
 'FrequencyVector',modelFreq,'RCSPattern',modelExtRCS);

The modeled wideband RCS can now be compared to the narrowband system

extWidebandSweep = widebandExtendedTarget(x,sweepang);

hold on;
plot(sweepaz,pow2db(extWidebandSweep));
hold off;
legend('Narrowband','Wideband');

1 Featured Examples

1-562

The target's RCS pattern now has much shallower nulls between 40 and 50 degrees azimuth. The
deep nulls in the narrowband pattern occur when signals combine destructively at a specific
frequency and azimuth combination. The wideband waveform fills in these fades because, while a few
frequencies may experience nulls for a given aspect, the majority of the bandwidth does not lie within
the null at that azimuth angle.

RCS of Fluctuating Targets

The discussion so far assumes that the target RCS value is constant over time. This is the
nonfluctuating target case. In reality, because both the radar system and the target are moving, the
RCS value changes over time. This case is a fluctuating target. To simulate fluctuating targets, Peter
Swerling developed four statistical models, referred to as Swerling 1 through Swerling 4, that are
widely adopted in practice. The Swerling models divide fluctuating targets into two probability
distributions and two time varying behaviors as shown in the following table:

 Slow Fluctuating Fast Fluctuating

 Exponential Swerling 1 Swerling 2
 4th Degree Chi-square Swerling 3 Swerling 4

The RCS of a slow-fluctuating target remains constant during a dwell but varies from scan to scan. In
contrast, the RCS for a fast fluctuating target changes with each pulse within a dwell.

The Swerling 1 and 2 models obey an exponential density function (pdf) given by

 Modeling Target Radar Cross Section

1-563

,

These models are useful in simulating a target consisting of a collection of equal strength scatterers.

The Swerling 3 and 4 models obey a 4th degree Chi-square pdf, given by

,

These models apply when the target contains a dominant scattering component. In both pdf
definitions, represents the mean RCS value, which is the RCS value of the same target under the
nonfluctuating assumption.

The next section shows how to apply a Swerling 1 statistical model when generating the radar echo
from the previously described cylindrical target.

cylindricalTargetSwerling1 = ...
 phased.BackscatterRadarTarget('PropagationSpeed',c,...
 'OperatingFrequency',fc,'AzimuthAngles',az,'ElevationAngles',el,...
 'RCSPattern',cylrcs,'Model','Swerling1')

cylindricalTargetSwerling1 =

 phased.BackscatterRadarTarget with properties:

 EnablePolarization: false
 AzimuthAngles: [1x361 double]
 ElevationAngles: [1x181 double]
 RCSPattern: [181x361 double]
 Model: 'Swerling1'
 PropagationSpeed: 300000000
 OperatingFrequency: 300000000
 SeedSource: 'Auto'

In the Swerling 1 case, the reflection is no longer constant. The RCS value varies from scan to scan.
Assuming that the target is illuminated by the signal only once per dwell, the following code
simulates the reflected signal power for 10,000 scans for a unit incident signal.

N = 10000;
tgt_echo = zeros(1,N);
x = 1;
for m = 1:N
 tgt_echo(m) = cylindricalTargetSwerling1(x,[0;0],true);
end
p_echo = tgt_echo.^2; % Reflected power

Plot the histogram of returns from all scans and verify that the distribution of the returns match the
theoretical prediction. The theoretical prediction uses the nonfluctuating RCS derived before. For the
cylindrical target, the reflected signal power at normal incidence for unit power input signal is

p_n = cyl_echo(1)^2;

helperTargetRCSReturnHistogramPlot(p_echo,p_n)

1 Featured Examples

1-564

RCS of Polarized Targets

The target RCS is also a function of polarization. To describe the polarization signature of a target, a
single RCS value is no longer sufficient. Instead, for each frequency and incident angle, a scattering
matrix is used to describe the interaction of the target with the incoming signal's polarization
components. This example will not go into further details because this topic is covered in the
“Modeling and Analyzing Polarization” example.

Conclusion

This example gave a brief introduction to radar target modeling for a radar system simulation. It
showed how to model point targets, targets with measured patterns, and extended targets. It also
described how to take statistical fluctuations into account when generating target echoes.

Reference

[1] Merrill Skolnik, Radar Handbook, 2nd Ed. Chapter 11, McGraw-Hill, 1990

[2] Bassem Mahafza, Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Chapman & Hall/
CRC, 2005

 Modeling Target Radar Cross Section

1-565

Simulating a Bistatic Polarimetric Radar
This example shows how to simulate a polarimetric bistatic radar system to estimate the range and
speed of targets. Transmitter, receiver and target kinematics are taken into account. For more
information regarding polarization modeling capabilities, see “Modeling and Analyzing Polarization”.

System Setup

The system operates at 300 MHz, using a linear FM waveform whose maximum unambiguous range
is 48 km. The range resolution is 50 meters and the time-bandwidth product is 20.

maxrng = 48e3; % Maximum range
rngres = 50; % Range resolution
tbprod = 20; % Time-bandwidth product

The transmitter has a peak power of 2 kw and a gain of 20 dB. The receiver also provides a gain of 20
dB and the noise bandwidth is the same as the waveform's sweep bandwidth.

The transmit antenna array is a stationary 4-element ULA located at origin. The array is made of
vertical dipoles.

txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
[waveform,transmitter,txmotion,radiator] = ...
 helperBistatTxSetup(maxrng,rngres,tbprod,txAntenna);

The receive antenna array is also a 4-element ULA; it is located at [20000;1000;100] meters away
from the transmit antenna and is moving at a velocity of [0;20;0] m/s. Assume the elements in the
receive array are also vertical dipoles. The received antenna array is oriented so that its broadside
points back to the transmit antenna.

rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
[collector,receiver,rxmotion,rngdopresp,beamformer] = ...
 helperBistatRxSetup(rngres,rxAntenna);

There are two targets present in space. The first one is a point target modeled as a sphere; it
preserves the polarization state of the incident signal. It is located at [15000;1000;500] meters away
from the transmit array and is moving at a velocity of [100;100;0] m/s.

The second target is located at [35000;-1000;1000] meters away from the transmit array and is
approaching at a velocity of [-160;0;-50] m/s. Unlike the first target, the second target flips the
polarization state of the incident signal, which means that the horizontal/vertical polarization
components of the input signal becomes the vertical/horizontal polarization components of the output
signal.

[target,tgtmotion,txchannel,rxchannel] = ...
 helperBistatTargetSetup(waveform.SampleRate);

A single scattering matrix is a fairly simple polarimetric model for a target. It assumes that no matter
what the incident and reflecting directions are, the power distribution between the H and V
components is fixed. However, even such a simple model can reveal complicated target behavior in
the simulation because (1) the H and V directions vary for different incident and reflecting directions;
and (2) the orientation, defined by the local coordinate system, of the targets also affects the
polarization matching.

1 Featured Examples

1-566

System Simulation

Next section simulates 256 received pulses. The receiving array is beamformed toward the two
targets. The first figure shows the system setting and how the receive array and the targets move.
The second figure shows a range-Doppler map generated for every 64 pulses received at the receiver
array.

Nblock = 64; % Burst size
dt = 1/waveform.PRF;
y = complex(zeros(round(waveform.SampleRate*dt),Nblock));

hPlots = helperBistatViewSetup(txmotion,rxmotion,tgtmotion,waveform,...
 rngdopresp,y);
Npulse = Nblock*4;
for m = 1:Npulse

 % Update positions of transmitter, receiver, and targets
 [tpos,tvel,txax] = txmotion(dt);
 [rpos,rvel,rxax] = rxmotion(dt);
 [tgtp,tgtv,tgtax] = tgtmotion(dt);

 % Calculate the target angles as seen by the transmitter
 [txrng,radang] = rangeangle(tgtp,tpos,txax);

 % Simulate propagation of pulse in direction of targets
 wav = waveform();
 wav = transmitter(wav);
 sigtx = radiator(wav,radang,txax);
 sigtx = txchannel(sigtx,tpos,tgtp,tvel,tgtv);

 % Reflect pulse off of targets
 for n = 2:-1:1
 % Calculate bistatic forward and backward angles for each target
 [~,fwang] = rangeangle(tpos,tgtp(:,n),tgtax(:,:,n));
 [rxrng(n),bckang] = rangeangle(rpos,tgtp(:,n),tgtax(:,:,n));

 sigtgt(n) = target{n}(sigtx(n),fwang,bckang,tgtax(:,:,n));
 end

 % Receive path propagation
 sigrx = rxchannel(sigtgt,tgtp,rpos,tgtv,rvel);
 [~,inang] = rangeangle(tgtp,rpos,rxax);

 rspeed_t = radialspeed(tgtp,tgtv,tpos,tvel);
 rspeed_r = radialspeed(tgtp,tgtv,rpos,rvel);

 % Receive target returns at bistatic receiver
 sigrx = collector(sigrx,inang,rxax);
 yc = beamformer(sigrx,inang);
 y(:,mod(m-1,Nblock)+1) = receiver(sum(yc,2));

 helperBistatViewTrajectory(hPlots,tpos,rpos,tgtp);

 if ~rem(m,Nblock)
 rd_rng = (txrng+rxrng)/2;
 rd_speed = rspeed_t+rspeed_r;
 helperBistatViewSignal(hPlots,waveform,rngdopresp,y,rd_rng,...
 rd_speed)

 Simulating a Bistatic Polarimetric Radar

1-567

 end
end

1 Featured Examples

1-568

The Range-Doppler map only shows the return from the first target. This is probably no surprise since
both the transmit and receive array are vertically polarized and the second target maps the vertically
polarized wave to horizontally polarized wave. The received signal from the second target is mostly
orthogonal to the receive array's polarization, resulting in significant polarization loss.

One may also notice that the resulting range and radial speed do not agree with the range and radial
speed of the target relative to the transmitter. This is because in a bistatic configuration, the
estimated range is actually the geometric mean of the target range relative to the transmitter and the
receiver. Similarly, the estimated radial speed is the sum of the target radial speed relative to the
transmitter and the receiver. The circle in the map shows where the targets should appear in the
range-Doppler map. Further processing is required to identify the exact location of the target, but
those are beyond the scope of this example.

Using Circularly Polarized Receive Array

Vertical dipole is a very popular choice of transmit antenna in real applications because it is low cost
and have a omnidirectional pattern. However, the previous simulation shows that if the same antenna
is used in the receiver, there is a risk that the system will miss certain targets. Therefore, a linear
polarized antenna is often not the best choice as the receive antenna in such a configuration because
no matter how the linear polarization is aligned, there always exists an orthogonal polarization. In

 Simulating a Bistatic Polarimetric Radar

1-569

case the reflected signal bears a polarization state close to that direction, the polarization loss
becomes huge.

One way to solve this issue is to use a circularly polarized antenna at the receive end. A circularly
polarized antenna cannot fully match any linear polarization. But on the other hand, the polarization
loss between a circular polarized antenna and a linearly polarized signal is 3 dB, regardless what
direction the linear polarization is in. Therefore, although it never gives the maximum return, it never
misses a target. A frequently used antenna with circular polarization is a crossed dipole antenna.

Next section shows what happens when crossed dipole antennas are used to form the receive array.

rxAntenna = phased.CrossedDipoleAntennaElement;
collector = clone(collector);
collector.Sensor.Element = rxAntenna;

helperBistatSystemRun(waveform,transmitter,txmotion,radiator,collector,...
 receiver,rxmotion,rngdopresp,beamformer,target,tgtmotion,txchannel,...
 rxchannel,hPlots,Nblock,Npulse);

The range-Doppler map now shows both targets at their correct locations.

1 Featured Examples

1-570

Summary

This example shows a system level simulation of a bistatic polarimetric radar. The example generates
range-Doppler maps of the received signal for different transmit/receive array polarization
configurations and shows how a circularly polarized antenna can be used to avoid losing linear
polarized signals due to a target's polarization scattering property.

 Simulating a Bistatic Polarimetric Radar

1-571

Simulating a Bistatic Radar with Two Targets
This example shows how to simulates a bistatic radar system with two targets. The transmitter and
the receiver of a bistatic radar are not co-located and move along different paths.

Exploring the Example

The following model shows an end-to-end simulation of a bistatic radar system. The system is divided
into three parts: the transmitter subsystem, the receiver subsystem, and the targets and their
propagation channels. The model shows the signal flowing from the transmitter, through the channels
to the targets and reflected back to the receiver. Range-Doppler processing is then performed at the
receiver to generate the range-Doppler map of the received echoes.

Transmitter

• Linear FM - Creates linear FM pulse as the transmitter waveform. The signal sweeps a 3 MHz
bandwidth, corresponding to a 50-meter range resolution.

• Radar Transmitter - Amplifies the pulse and simulates the transmitter motion. In this case, the
transmitter is mounted on a stationary platform located at the origin. The operating frequency of
the transmitter is 300 MHz.

1 Featured Examples

1-572

Targets

This example includes two targets with similar configurations. The targets are mounted on the
moving platforms.

• Tx to Targets Channel - Propagates signal from the transmitter to the targets. The signal
inputs and outputs of the channel block have two columns, one column for the propagation path to
each target.

• Targets to Rx Channel - Propagates signal from the targets to the receiver. The signal inputs
and outputs of the channel block have two columns, one column for the propagation path from
each target.

• Targets - Reflects the incident signal and simulates both targets motion. This first target with an
RCS of 2.5 square meters is approximately 15 km from the transmitter and is moving at a speed of
141 m/s. The second target with an RCS of 4 square meters is approximately 35 km from the
transmitter and is moving at a speed of 168 m/s. The RCS of both targets are specified as a vector
of two elements in the Mean radar cross section parameter of the underlying Target block.

Receiver

• Radar Receiver - Receives the target echo, adds receiver noise, and simulates the receiver
motion. The distance between the transmitter and the receiver is 20 km, and the receiver is
moving at a speed of 20 m/s. The distance between the receiver and the two targets are
approximately 5 km and 15 km, respectively.

• Range-Doppler Processing - Computes the range-Doppler map of the received signal. The
received signal is buffered to form a 64-pulse burst which is then passed to a range-Doppler
processor. The processor performs a matched filter operation along the range dimension and an
FFT along the Doppler dimension.

 Simulating a Bistatic Radar with Two Targets

1-573

Exploring the Model

Several dialog parameters of the model are calculated by the helper function
helperslexBistaticParam. To open the function from the model, click on Modify Simulation
Parameters block. This function is executed once when the model is loaded. It exports to the
workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either
change the values in the structure at the command prompt or edit the helper function and rerun it to
update the parameter structure.

Results and Displays

The figure below shows the two targets in the range-Doppler map.

1 Featured Examples

1-574

Because this is a bistatic radar, the range-Doppler map above actually shows the target range as the
arithmetic mean of the distances from the transmitter to the target and from the target to the
receiver. Therefore, the expected range of the first target is approximately 10 km, ((15+5)/2) and for
second target approximately 25 km, ((35+15)/2). The range-Doppler map whos these two values as
the measured values.

Similarly, the Doppler shift of a target in a bistatic configuration is the sum of the target's Doppler
shifts relative to the transmitter and the receiver. The relative speeds to the transmitter are -106.4
m/s for the first target and 161.3 m/s for the second target while the relative speeds to the receiver
are 99.7 m/s for the first target and 158.6 m/s for second target. Thus, the range-Doppler map shows
the overall relative speeds as -6.7 m/s (-24 km/h) and 319.9 m/s (1152 km/h) for the first target and
the second target, respectively, which agree with the expected sum values.

Summary

This example shows an end-to-end bistatic radar system simulation with two targets. It explains how
to analyze the target return by plotting a range-Doppler map.

 Simulating a Bistatic Radar with Two Targets

1-575

Modeling a Wideband Monostatic Radar in a Multipath
Environment

This example shows how to simulate a wideband radar system. A radar system is typically considered
to be wideband when its bandwidth exceeds 5% of the system's center frequency. For this example, a
bandwidth of 10% will be used.

Exploring the Example

This example expands on the narrowband monostatic radar system explored in the “Simulating Test
Signals for a Radar Receiver in Simulink” example by modifying it for wideband radar simulation. For
wideband signals, both propagation losses and target RCS can vary considerably across the system's
bandwidth. It is for this reason that narrowband models cannot be used, as they only model
propagation and target reflections at a single frequency. Instead, wideband models divide the
system's bandwidth into multiple subbands. Each subband is then modeled as a narrowband signal
and the received signals within each subband are recombined to determine the response across the
entire system's bandwidth.

The model consists of a transceiver, a channel, and a target. The blocks that correspond to each
section of the model are:

Transceiver

• Linear FM - Creates linear FM pulses.
• Transmitter - Amplifies the pulses and sends a Transmit/Receive status to the Receiver

Preamp block to indicate if it is transmitting.
• Receiver Preamp - Receives the propagated pulses when the transmitter is off. This block also

adds noise to the signal.
• Platform - Used to model the radar's motion.

1 Featured Examples

1-576

• Signal Processing - Subsystem performs stretch processing, Doppler processing, and noise
floor estimation.

• Matrix Viewer - Displays the processed pulses as a function of the measured range, radial
speed, and estimated signal power to interference plus noise power ratio (SINR).

Signal Processing Subsystem

• Stretch Processor - Dechirps the received signal by mixing it in the analog domain with the
transmitted linear FM waveform delayed to a selected reference range. A more detailed
discussion on stretch processing is available in the “FMCW Range Estimation” example.

• Decimator - Subsystem models the sample rate of the analog-to-digital converter (ADC) by
reducing the simulation's sample rate according to the bandwidth required by the range span
selected in the stretch processor.

• Buffer CPI - Subsystem collects multiple pulse repetition intervals (PRIs) to form a coherent
processing interval (CPI), enabling radial speed estimation through Doppler processing.

• Range-Doppler Response - Computes DFTs along the range and Doppler dimensions to
estimate the range and radial speed of the received pulses.

• CA CFAR 2-D - Estimates the noise floor of the received signals using the cell-averaging (CA)
method in both range and Doppler.

• Compute SINR - Subsystem normalizes the received signal using the CFAR detector's computed
threshold, returning the estimated SINR in decibels (dB).

Channel

• Wideband Two-Ray - Applies propagation delays, losses, Doppler shifts and multipath reflections
off of a flat ground to the pulses. One block is used for the transmitted pulses and another one for
the reflected pulses. The Wideband Two-Ray blocks require the positions and velocities of the
radar and the target. Those are supplied using the Goto and From blocks.

Target Subsystem

The Target subsystem models the target's motion and reflects the pulses according to the wideband
RCS model and the target's aspect angle presented to the radar. In this example, the target is
positioned 3000 meters from the wideband radar and is moving away from the radar at 100 m/s.

 Modeling a Wideband Monostatic Radar in a Multipath Environment

1-577

• Platform - Used to model the target's motion. The target's position and velocity values are used
by the Wideband Two-Ray Channel blocks to model propagation and by the Range Angle
block to compute the signal's incident angles at the target's location.

• Range Angle - Computes the propagated signal's incident angles in azimuth and elevation at the
target's location.

• Wideband Backscatter Target - Models the wideband reflections of the target to the incident
pulses. The extended wideband target model introduced in the Modeling Target Radar Cross
Section example is used for this simulation.

Exploring the Model

Several dialog parameters of the model are calculated by the helper function
helperslexWidebandMonostaticRadarParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports
to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

The figure below shows the range and radial speed of the target. Target range is computed from the
round-trip delay of the reflected pulses. The target's radial speed is estimated by using the DFT to
compare the phase progression of the received target returns across the coherent pulse interval
(CPI). The target's range and radial speed are measured from the peak of the stretch and Doppler
processed output.

1 Featured Examples

1-578

Although only a single target was modeled in this example, three target returns are observed in the
upper right-hand portion of the figure. The multipath reflections along the transmit and receive paths
give rise to the second and third target returns, often referred to as the single- and double-bounce
returns respectively. The expected range and radial speed for the target is computed from the
simulation parameters.

tgtRange = rangeangle(paramWidebandRadar.targetPos,...
 paramWidebandRadar.sensorPos)

tgtRange =

 3000

tgtSpeed = radialspeed(...
 paramWidebandRadar.targetPos,paramWidebandRadar.targetVel,...
 paramWidebandRadar.sensorPos,paramWidebandRadar.sensorVel)

tgtSpeed =

 -100

 Modeling a Wideband Monostatic Radar in a Multipath Environment

1-579

This expected range and radial speed are consistent with the simulated results in the figure above.

The expected separation between the multipath returns can also be found. The figure below
illustrates the line-of-sight and reflected path geometries.

The modeled geometric parameters for this simulation are defined as follows.

zr = paramWidebandRadar.targetPos(3);
zs = paramWidebandRadar.sensorPos(3);
Rlos = tgtRange;

The length of each of these paths is easily derived.

Using these results, the reflected path range can be computed.

L = sqrt(Rlos^2-(zr-zs)^2);
Rrp = sqrt((zs+zr)^2+L^2)

Rrp =

1 Featured Examples

1-580

 3.0067e+03

For a monostatic system, the single bounce return can traverse two different paths.

1 Radar Target Radar
2 Radar Target Radar

In both cases, the same range will be observed by the radar.

The range separation between all of the multipath returns is then found to be the difference between
the observed and line-of-sight ranges.

Rdelta = (Rrp-Rlos)/2

Rdelta =

 3.3296

Which matches the multipath range separation observed in the simulated results.

Summary

This example demonstrated how an end-to-end wideband radar system can be modeled within
Simulink®. The variation of propagation losses and target RCS across the system's bandwidth
required wideband propagation and target models to be used.

The signal to interference plus noise ratio (SINR) of the received target returns was estimated using
the CA CFAR 2-D block. The CFAR estimator used cell-averaging to estimate the noise and
interference power in the vicinity of the target returns which enabled calculation of the received
signal's SINR.

The target was modeled in a multipath environment using the Wideband Two-Ray Channel, which
gave rise to three target returns observed by the radar. These returns correspond to the line-of-sight,
single-bounce, and double-bounce paths associated with the two-way signal propagation between the
monostatic radar and the target. The simulated separation of the multipath returns in range was
shown to match the expected separation computed from the modeled geometry.

 Modeling a Wideband Monostatic Radar in a Multipath Environment

1-581

Introduction to Modeling the Propagation of Radar Signals
This example shows how to model several RF propagation effects. These include free space path loss,
atmospheric attenuation due to rain, fog and gas, and multipath propagation due to bounces on the
ground. This discussion is based on the International Telecommunication Union's ITU-R P series
recommendations. ITU-R is the organization's radio communication sector and the P series focuses on
radio wave propagation.

Introduction

To properly evaluate the performance of radar and wireless communication systems, it is critical to
understand the propagation environment. The received signal power of a monostatic radar is given by
the radar range equation:

where is the transmitted power, is the antenna gain, is the target radar cross section (RCS),
is the wavelength, and is the propagation distance. All propagation losses other than free space
path loss are included in the term. The rest of example shows how to estimate this term in
different scenarios.

Free Space Path Loss

Free space path loss is computed as a function of propagation distance and frequency. In free space,
RF signals propagate at the speed of light in all directions. At a far enough distance, the radiating
source looks like a point in space and the wavefront forms a sphere whose radius is equal to . The
power density at the wavefront is inversely proportional to :

where is the transmitted signal power. For a monostatic radar where the signal has to travel both
directions (from the source to the target and back), the dependency is actually inversely proportional
to , as shown previously in the radar equation. The loss related to this propagation mechanism is
referred to as free space path loss, sometimes also called the spreading loss. Quantitatively, free
space path loss is also a function of frequency, given by [5]:

As a convention, propagation losses are often expressed in dB. This convention makes it much easier
to derive the two-way free space path loss by simply doubling the one-way free space loss.

Use fspl to calculate the free-space path loss, and plot the loss for frequencies between 1 and 1000
GHz, for different ranges.

c = physconst('lightspeed');
R0 = [100 1e3 10e3];
freq = (1:1000).'*1e9;
apathloss = fspl(R0,c./freq);
loglog(freq/1e9,apathloss);
grid on;

1 Featured Examples

1-582

ylim([90 200]);
legend('Range: 100 m', 'Range: 1 km', 'Range: 10 km','Location','northwest');
xlabel('Frequency (GHz)');
ylabel('Path Loss (dB)');
title('Free Space Path Loss');

The figure illustrates that the propagation loss increases with range and frequency.

Propagation Loss Due to Precipitation and Atmosphere

In reality, signals don't always travel in a vacuum, so free space path loss describes only part of the
signal attenuation. Signals interact with particles in the air and lose energy along the propagation
path. The loss varies with different factors such as pressure, temperature, and water density.

Loss Due to Rain and Snow

Rain can be a major limiting factor for a radar systems, especially when operating above 5 GHz. In
the ITU model in [2], rain is characterized by the rain rate (in mm/h). According to [6], the rain rate
can range from less than 0.25 mm/h for very light rain to over 50 mm/h for extreme rains. In addition,
because of the rain drop's shape and its relative size compared to the RF signal wavelength, the
propagation loss due to rain is also a function of signal polarization. In general, horizontal
polarization represents the worst case for propagation loss due to rain.

The functions rainpl and cranerainpl can be used to compute losses due to rain according to the
ITU and Crane models, respectively. Both models are valid between 1 GHz and 1 THz. Let the
polarization be horizontal, so the tilt angle is 0, and let the signal propagate parallel to the ground, so
the elevation angle is 0. Plot losses computed with both models and compare.

 Introduction to Modeling the Propagation of Radar Signals

1-583

R0 = 5e3; % 5 km range
rainrate = [1 4 20]; % rain rate in mm/h
el = 0; % 0 degree elevation
tau = 0; % horizontal polarization

for m = 1:numel(rainrate)
 rainloss_itu(:,m) = rainpl(R0,freq,rainrate(m),el,tau)';
 rainloss_crane(:,m) = cranerainpl(R0,freq,rainrate(m),el,tau)';
end
loglog(freq/1e9,rainloss_itu);
hold on;
set(gca,'ColorOrderIndex',1); % reset color index for better comparison
loglog(freq/1e9,rainloss_crane,'--');
hold off;
grid on;
legend('Light Rain (ITU)','Moderate Rain (ITU)','Heavy Rain (ITU)',...
 'Light Rain (Crane)','Moderate Rain (Crane)','Heavy Rain (Crane)', ...
 'Location','SouthEast');
xlabel('Frequency (GHz)');
ylabel('Attenuation at 1 km (dB)')
title('Rain Attenuation for Horizontal Polarization');

The losses computed with the Crane model are mostly larger than the losses computed with the ITU
model at this propagation range. At smaller propagation ranges and lower frequencies, the ITU model
may output a smaller attenuation value than Crane. Note that the models differ greatly enough that
at higher frequencies, "light" rainfall for one model may have the same attenuation as "moderate"
rainfall for the other model.

1 Featured Examples

1-584

Similar to rainfall, snow can also have a significant impact on the propagation of RF signals. A
common practice is to treat snow as rainfall and compute the propagation loss based on the rain
model, even though this approach tends to overestimate the loss a bit. Attenuation due to
propagation through snow is not considered dependent on polarization, but is highly dependent on
frequency. The model for losses due to snow is parameterized by the equivalent liquid content instead
of volume. For a given water content, snow requires about 10 times as much volume as rain.

Use snowpl to compute losses due to snow, and plot the losses against frequency. By default, this
function uses the Gunn-East attenuation model, which is generally considered valid up to about 20
GHz.

freq = (1:20)*1e9;
R0 = 1e3; % 1 km range
snowrate = [0.1 1.5 4]; % equivalent liquid water content in mm/h

for m = 1:numel(snowrate)
 snowloss(:,m) = snowpl(R0,freq,snowrate(m));
end
loglog(freq/1e9,snowloss);
grid on;
legend('Light Snow','Moderate Snow','Heavy Snow', ...
 'Location','SouthEast');
xlabel('Frequency (GHz)');
ylabel('Attenuation at 1 km (dB)')
title('Snow Attenuation');

Loss Due to Fog and Cloud

 Introduction to Modeling the Propagation of Radar Signals

1-585

Fog and cloud are formed with water droplets too, although much smaller compared to rain drops.
The size of fog droplets is generally less than 0.01 cm. Fog is often characterized by the liquid water
density. A medium fog with a visibility of roughly 300 meters, has a liquid water density of 0.05 g/
m^3. For heavy fog where the visibility drops to 50 meters, the liquid water density is about 0.5 g/
m^3. The atmosphere temperature (in Celsius) is also present in the ITU model for propagation loss
due to fog and cloud [3].

Use fogpl to compute losses due to fog, and plot the losses against frequency. The ITU model for
attenuation due to fog is valid between 10 GHz and 1 THz.

freq = (10:1000)*1e9;
T = 15; % 15 degree Celsius
waterdensity = [0.01 0.05 0.5]; % liquid water density in g/m^3
for m = 1: numel(waterdensity)
 fogloss(:,m) = fogpl(R0,freq,T,waterdensity(m))';
end
loglog(freq/1e9,fogloss);
grid on;
legend('Light Fog','Medium Fog','Heavy Fog','Location','southeast');
xlabel('Frequency (GHz)');
ylabel('Attenuation at 1 km (dB)')
title('Fog Attenuation');

Note that in general fog is not present when it is raining.

Loss Due to Atmospheric Absorption and Lensing

1 Featured Examples

1-586

Even when there is no fog or rain, the atmosphere is full of gases that still affect the signal
propagation. The ITU model [4] describes atmospheric gas attenuation as a function of both dry air
pressure, like oxygen, measured in hPa, and water vapour density, measured in g/m^3.

Use tropopl to compute losses due to atmospheric absorption, and plot the losses against frequency.
By default, this function uses the Mean Annual Global Reference Atmosphere (MAGRA) model to get
typical values of temperature, pressure, and water vapor density for a given altitude. We can also
specify a latitude model to use a model tailored for a specific range of latitudes. Some latitude models
also allow for specification of a season. Let our altitude be 2 km (note that the troposphere, for which
this model is valid, extends up to 10 km) and our propagation path be depressed by 5 degrees. This
function will return the total loss due to atmospheric absorption over the slanted propagation path,
but does not include dissipation due to refraction (lensing). We'll compare losses between the low,
mid, and high latitude models.

height = 2e3;
el = -5; % elevation angle
atmloss_low = tropopl(R0,freq,height,el,'LatitudeModel','Low');
atmloss_mid = tropopl(R0,freq,height,el,'LatitudeModel','Mid');
atmloss_high = tropopl(R0,freq,height,el,'LatitudeModel','High');
loglog(freq/1e9,atmloss_low);
hold on;
loglog(freq/1e9,atmloss_mid);
loglog(freq/1e9,atmloss_high);
hold off;
grid on;
legend('Low Latitudes','Mid Latitudes','High Latitudes','Location','northwest');
xlabel('Frequency (GHz)');
ylabel('Attenuation at 1 km (dB)')
title('Atmospheric Gas Attenuation');

 Introduction to Modeling the Propagation of Radar Signals

1-587

The plot suggests that there is a strong absorption due to atmospheric gases at around 60 GHz.

Another source of losses due to atmosphere is from atmospheric lensing. This is a phenomenon
whereby the angular extent of a transmission is increased with range due to a refractivity gradient.
This spreading of energy decreases the energy density along the nominal (straight) propagation path,
independent of frequency.

Atmospheric pressure, and thus refractivity, changes with altitude. So for a given height, the
elevation angle of the propagation path is enough to determine losses due to this effect.

1 Featured Examples

1-588

Use lenspl to compute these losses and plot against frequency. Because this loss is independent of
frequency, we'll plot the loss against propagation range for a set of heights. Use an elevation angle of
0.05 degrees for a slanted propagation path.

R = 1e3:1e3:100e3; % propagation range
el = 0.05; % elevation angle
heights = [10 100 200]; % radar platform heights
for m = 1:numel(heights)
 lenloss(:,m) = lenspl(R,heights(m),el);
end
semilogy(R/1e3,lenloss);
grid on;
legend('Height: 10 m','Height: 100 m','Height: 200 m','Location',...
 'southeast');
xlabel('Propagation Range (km)');
ylabel('Attenuation (dB)')
title('Atmospheric Lensing Attenuation');

 Introduction to Modeling the Propagation of Radar Signals

1-589

Attenuation due to lensing decreases as altitude increases. For convenience, attenuation due to
lensing is also provided as a secondary output from tropopl.

Loss Due to Polarization Mismatch

Some types of propagation loss are dependent on the polarization of the transmitted radiation, such
as with rain loss. This is a result of the chemical and structural properties of the medium. However,
even in free space there may be losses due to a mismatch of the propagated polarization vector and
the receiving antenna's polarization. For example, if the propagated polarization vector is orthogonal
to the receiving antenna's polarization, no direct signal energy would be received. Note that the
"propagated polarization vector" is not in general the same as the transmitted polarization vector, as
the direction of propagation must be taken into account. Note also that the other loss functions which
take polarization as an input do not compute losses due to this mismatch. Polarization-dependent
losses due to properties of the propagation medium can be handled separately from losses due to
polarization mismatch, as the latter is heavily dependent on the transmitter/receiver orientation.

Use polloss to compute the loss due to polarization mismatch for a given transmit/receive
polarization, platform positions, and platform orientations. Place the transmit platform at the origin
with no rotation from inertial. Place the receive platform along the X axis and compute polarization
loss for a range of roll angles. Let the antenna polarizations both be vertical.

poltx = [0;1]; % [H;V] polarization
polrx = [0;1];
postx = [0;0;0];
posrx = [100;0;0];
frmtx = eye(3); % transmit frame aligned with inertial

1 Featured Examples

1-590

rolls = 0:180;

for m = 1:numel(rolls)
 frm_r = rotx(rolls(m));
 rho(m) = polloss(poltx,polrx,posrx,frm_r,postx,frmtx);
end

semilogy(rolls,rho);
grid on;
xlabel('Roll Angle (deg)');
ylabel('Attenuation (dB)');
title('Attenuation Due to Polarization Mismatch');

The attenuation approaches infinity at a 90 degree roll angle.

Radar Propagation Factor and Vertical Coverage Diagram

When transmitting over a wide angle or from an antenna close to the ground, multipath from ground
bounce, along with refraction from atmosphere, yields a radiation pattern at a given range that can
be quite different from the nominal transmit pattern. This is captured by the radar propagation factor,
which is the ratio of the actual field strength relative to what the field strength would be in free
space. The propagation factor can vary greatly as the relative phase between the direct and indirect
path signals changes.

A vertical coverage diagram (Blake chart) is a compact way of displaying contours of fixed signal
energy (such as a minimum signal power for detection) as a function of propagation range and

 Introduction to Modeling the Propagation of Radar Signals

1-591

elevation angle. Only the vertical plane in which both the direct and indirect path signals propagate
needs to be considered.

The function radarvcd takes a reference range as input and returns the range at which the received
power in the multipath environment equals what it would be in free space. This "effective" range is
plotted on a range-height-angle chart. This can quickly give, for example, the actual detection range
given a free-space detection range, as a function of range, height, or elevation angle.

We'll use a free-space detection range of 100 km, transmit frequencies in L-Band and C-Band, and an
antenna height of 12 m. By default, a sinc transmit pattern is used.

freq = [1.06 5.7]*1e9; % L-Band and C-Band transmit frequencies (Hz)
antht = 12; % height of antenna (m)
rngfs = 100; % free-space detection range (km)
for m = 1:numel(freq)
 [vcp{m}, vcpang{m}] = radarvcd(freq(m),rngfs,antht);
end

blakechart takes these detection ranges and angles, along with additional atmospheric properties
to create the Blake chart. Use refractiveidx and compute the corresponding refraction exponent
for input to blakechart.

[~,N] = refractiveidx(0); % atmospheric refractivity at the surface
helperPlotBlakeChart(vcp,vcpang,N)

Ground-bounce interference dominates the propagation factor for shorter ranges, the "interference
region", but at longer ranges and low elevation angles the propagation factor becomes dominated by

1 Featured Examples

1-592

diffraction over the horizon, the "diffraction region". We can use radarpropfactor to compute the
propagation factor for an interval of ranges and observe the difference between these two regions.

Compute the propagation factor for a fixed height above the surface of 1 km and propagation ranges
between 50 and 200 km. Set the surface slope and height standard deviation to 0 to represent a
smooth surface. Perform the analysis for the two frequency bands.

tgtht = 1e3; % target height (m)
R = (50:200)*1e3; % propagation range (m)
Re = effearthradius; % effective Earth radius (m)
Rd = sqrt(2*Re)*(sqrt(antht) + sqrt(tgtht)); % diffraction range
F = zeros(numel(freq),numel(R));
for m = 1:numel(freq)
 F(m,:) = radarpropfactor(R,freq(m),antht,tgtht,'SurfaceHeightStandardDeviation',0,'SurfaceSlope',0);
end
helperPlotPropagationFactor(R,F,Rd)

The propagation factor oscillates in the interference region, then decreases quickly in the diffraction
region.

Combine the ground-bounce interference and atmospheric absorption losses. Assume in this
calculation that a 3.3 GHz S-band surface ship radar is 20 m above the water and has an elevation
beamwidth of 30 deg.

freq = 3.3e9; % Frequency (Hz)
elbw = 30; % Elevation beamwidth (deg)
Rkm = 1:0.1:120; % Range (km)

 Introduction to Modeling the Propagation of Radar Signals

1-593

R = Rkm.*1e3; % Range (m)
[htsd,beta0] = searoughness(1); % Sea surface
anht = 20 + 2*htsd; % Radar height (m)
tgtht = (anht+1):1:300; % Target height (m)

% Calculate combined environment losses for different heights and ranges
[PLdB, PLdBNorm] = helperCombineEnvLosses(R,freq,anht,tgtht,htsd,beta0,elbw);

% Plot combined losses for different heights and ranges
helperPlotCombinedEnvLosses(Rkm,freq,anht,tgtht,PLdBNorm)

Multipath Propagation, Time Delays, and Doppler Shifts

As we've seen, signals may not always propagate along the line of sight, but arrive at the destination
via different paths and may add up either constructively or destructively. This multipath effect can
cause significant fluctuations in the received signal power.

The functions mentioned above for computing propagation losses are useful to establish budget links,
but to simulate the propagation of arbitrary signals, we also need to apply range-dependent time
delays, gains, and phase shifts. Various channel objects are available to model multipath propagation.
For a simple line-of-sight path, phased.LOSChannel can be used to model the propagation subject
to any of the loss types described above.

Ground reflection is a common phenomenon for many radar or wireless communication systems. For
example, when a ground-based or sea-based radar illuminates a target, the signal not only propagates
along the direct line of sight but is also reflected from the ground. twoRayChannel can be used to
model the combination of a direct path and single-bounce path, such as for ground reflection.

1 Featured Examples

1-594

Time Delays and Doppler Shifts

First, define the transmitted signal. A rectangular waveform will be used in this case.

waveform = phased.RectangularWaveform('PRF',250);
wav = waveform();

Assume a L-band operating frequency of 1.9 GHz. Model the channel with

fc = 1.9e9;
channel = twoRayChannel('PropagationSpeed',c,'OperatingFrequency',fc);

Assume the target unit is 1.65 km above the ground, the radar antenna is 12 meters above the
ground at a 50 km distance. Simulate the signal as it reaches the target.

pos_radar = [0;0;12];
pos_target = [50e3;0;1.65e3];
vel_radar = [0;0;0];
vel_target = [-200;0;0];
y2ray = channel(wav,pos_radar,pos_target,vel_radar,vel_target);

Visualize the transmitted and propagated pulse and their normalized spectrum. The channel
introduced a delay of 167 which corresponds to the 50 km range of the target divided by the
speed of light.

[delay, dop] = helperPlotDelayAndDopplerShift(wav,y2ray,waveform.SampleRate);

estRange = delay*c*1e-3 % km

 Introduction to Modeling the Propagation of Radar Signals

1-595

estRange =

 49.9954

The channel also applied a Doppler shift that corresponds to the range rate of the target. Compare
the estimated value to the -200 m/s ground truth using dop2speed and freq2wavelen.

estRangeRate = -dop2speed(dop,freq2wavelen(fc)) % m/s

estRangeRate =

 -201.9038

Multipath Fading

The signal loss suffered in this channel can be computed as

L_2ray = pow2db(bandpower(wav))-pow2db(bandpower(y2ray))

L_2ray =

 151.5888

The free space path loss is given by

L_ref = fspl(norm(pos_target-pos_radar),c/fc)

L_ref =

 132.0069

The result suggests that in this configuration, the channel introduces an extra 19.6 dB loss to the
received signal compared to the free space case. Now assume the target flies a bit higher at 1.8 km
above the ground. Repeating the simulation above suggests that this time the ground reflection
actually provides a 6 dB gain! Although free space path loss is essentially the same in the two
scenarios, a 150 m move caused a 25.6 dB fluctuation in signal power.

pos_target = [50e3;0;1.8e3];
y2ray = channel(wav,pos_radar,pos_target,vel_radar,vel_target);
L_2ray = pow2db(bandpower(wav))-pow2db(bandpower(y2ray))
L_ref = fspl(norm(pos_target-pos_radar),c/fc)

L_2ray =

 126.0374

L_ref =

1 Featured Examples

1-596

 132.0078

Increasing a system's bandwidth increases the capacity of its channel. This enables higher data rates
in communication systems and finer range resolutions for radar systems. The increased bandwidth
can also improve robustness to multipath fading for both systems.

Typically, wideband systems operate with a bandwidth of greater than 5% of their center frequency.
In contrast, narrowband systems operate with a bandwidth of 1% or less of the system's center
frequency.

The narrowband channel in the preceding section was shown to be very sensitive to multipath fading.
Slight changes in the target's height resulted in considerable signal losses. The channel's fading
characteristics can be plotted by varying the target's height across a span of operational heights for
this radar system. A span of heights from 1 km to 3 km is chosen.

% Simulate the signal fading at the target for heights from 1 km to 3 km
hTarget = linspace(1e3,3e3);
pos_target = repmat([50e3;0;1.6e3],[1 numel(hTarget)]);
pos_target(3,:) = hTarget;
vel_target = repmat(vel_target,[1 numel(hTarget)]);

release(channel);
y2ray = channel(repmat(wav,[1 numel(hTarget)]),pos_radar,pos_target,vel_radar,vel_target);

The signal loss observed at the target for the narrowband system can now be plotted.

L2ray = pow2db(bandpower(wav))-pow2db(bandpower(y2ray));

clf;
plot(hTarget,L2ray);
xlabel('Target Height (m)');
ylabel('One-Way Propagation Loss (dB)');
title('Multipath Fading Observed at the Target');
grid on;

 Introduction to Modeling the Propagation of Radar Signals

1-597

The sensitivity of the channel loss to the target's height for this narrowband system is clear. Deep
signal fades occur at heights that are likely to be within the surveillance area of the radar.

Increasing the channel's bandwidth can improve robustness to these multipath fades. To do this, a
wideband waveform is defined with a bandwidth of 8% of the link's center frequency.

bw = 0.08*fc;
pulse_width = 1/bw;
fs = 2*bw;

waveform = phased.RectangularWaveform('SampleRate',fs,'PRF',2000,'PulseWidth',pulse_width);
wav = waveform();

A wideband version of this channel model, widebandTwoRayChannel, can be used to simulate the
multipath reflections of this wideband signal off of the ground between the radar and the target and
to compute the corresponding channel loss.

channel = widebandTwoRayChannel('PropagationSpeed',c,'OperatingFrequency',fc,'SampleRate',fs);

The signal at the target for various operational heights can now be simulated for this wideband
system.

y2ray_wb = channel(repmat(wav,[1 numel(hTarget)]),pos_radar,pos_target,vel_radar,vel_target);
L2ray_wb = pow2db(bandpower(wav))-pow2db(bandpower(y2ray_wb));

hold on;
plot(hTarget,L2ray_wb);

1 Featured Examples

1-598

hold off;
legend('Narrowband','Wideband');

As expected, the wideband channel provides much better performance across a wide range of heights
for the target. In fact, as the height of the target increases, the impact of multipath fading almost
completely disappears. This is because the difference in propagation delay between the direct and
bounce path signals is increasing, reducing the amount of coherence between the two signals when
received at the target.

Conclusion

This example provides an overview of RF propagation losses due to atmospheric and weather effects.
It also introduces multipath signal fluctuations due to ground bounces. It highlighted functions and
objects to simulate attenuation losses for narrowband and wideband single-bounce channels.

References

[1] John Seybold, Introduction to RF Propagation, Wiley, 2005

[2] Recommendation ITU-R P.838-3, 2005

[3] Recommendation ITU-R P.840-3, 2013

[4] Recommendation ITU-R P.676-10, 2013

[5] Recommendation ITU-R P.525-2, 1994

[6] Rain, A Water Resource (Pamphlet), U.S. Geological Survey, 1988

 Introduction to Modeling the Propagation of Radar Signals

1-599

Supporting Functions

helperPlotPropagationFactor

function helperPlotPropagationFactor(R,F,Rd)

% Plot interference and diffraction region patches
[minF, maxF] = bounds(F(:));
maxF = ceil((maxF+10)/10)*10;
minF = floor((minF-10)/10)*10;
yPatch = [minF minF maxF maxF];
c1 = [0.3010 0.7450 0.9330];
c2 = [0 0.4470 0.7410];
clf % clear current figure
fill([R(1) Rd Rd R(1)]/1e3,yPatch,c1,'EdgeColor','none','FaceAlpha',0.25)
hold on
fill([Rd R(end) R(end) Rd]/1e3,yPatch,c2,'EdgeColor','none','FaceAlpha',0.25)

% Plot one-way propagation factor
set(gca,'ColorOrderIndex',1); % reset color index
plot(R/1e3,F);
ylim([minF maxF])
grid on;
xlabel('Range (km)');
ylabel('Propagation Factor (dB)');
title('One-Way Propagation Factor at 1 km above Surface');
legend('Interference Region', 'Diffraction Region',...
 'L-Band (1.06 GHz)', 'C-Band (5.7 GHZ)',...
 'Location','SouthWest')
hold off
end

helperPlotBlakeChart

function helperPlotBlakeChart(vcp,vcpang,N)
% Calculate refraction exponent
DelN = -7.32*exp(0.005577*N);
rexp = log(N./(N + DelN));

subplot(211)
blakechart(vcp{1},vcpang{1},'SurfaceRefractivity',N,'RefractionExponent',rexp);
legend('L-Band (1.06 GHz)')
xlabel('')
title ('Blake Chart - Antenna Height: 12 m')
subplot(212)
blakechart(vcp{2},vcpang{2},'SurfaceRefractivity',N,'RefractionExponent',rexp);
allc = get(gca,'Children');
set(allc(11),'Color',[0.8500 0.3250 0.0980]) % Change line color
title('')
legend('C-Band (5.7 GHz)')
end

helperPlotDelayAndDopplerShift

function [delay, dop] = helperPlotDelayAndDopplerShift(wav,y2ray,Fs)
% Plot transmitted and propagated pulse
t = 1e6*(0:numel(wav)-1)'/Fs;
subplot(211)

1 Featured Examples

1-600

yyaxis left
plot(t,abs(wav))
ylabel('Magnitude')
yyaxis right
plot(t,abs(y2ray))
grid on
axis padded
xlim([0 300])
xlabel(['Time (' char(0x00B5) 's)'])
ylabel('Magnitude')
title('Transmitted and Propagated Pulse')

% Annotation
delay = midcross(abs(y2ray),t/1e6,'MidPercentReferenceLevel',80); % seconds
delay = delay(1);
xl = xline(1e6*delay,'-.',... % Annotation
 {[num2str(round(1e6*delay)),' ',char(0x00B5) 's delay']},'Color',[0.8500 0.3250 0.0980]);
xl.LabelVerticalAlignment = 'middle';
xl.LabelHorizontalAlignment = 'left';
xl.LineWidth = 2;

% Plot power spectrum
subplot(212)
[p,f] = pspectrum([wav y2ray],Fs,'FrequencyLimits',[-20e3 20e3]);
p = abs(p);
plot(1e-3*f,rescale(p,'InputMin',min(p),'InputMax',max(p)));
axis padded
grid on
[~,idx]=max(p);
dop = f(idx(2))-f(idx(1)); % Hz
xlabel('Frequency (kHz)')
ylabel('Magnitude')
title('Normalized Spectrum')

xl = xline(1e-3*dop,'-.',... % Annotation
 {'Doppler shift',[num2str(round(dop)*1e-3) ' kHz']},'Color',[0.8500 0.3250 0.0980]);
xl.LabelVerticalAlignment = 'bottom';
xl.LineWidth = 2;
legend('Transmitted','Propagated')
end

helperCombineEnvLosses

function [PLdB, PLdBNorm] = helperCombineEnvLosses(R,freq,anht,tgtht,htsd,beta0,elbw)
% Calculate the combined environment losses
numHt = numel(tgtht);
numR = numel(R);
F = zeros(numHt,numR);
for ih = 1:numHt
 F(ih,:) = radarpropfactor(R, freq, anht, tgtht(ih),...
 'SurfaceHeightStandardDeviation',htsd,'SurfaceSlope',beta0,...
 'ElevationBeamwidth', elbw);
end

% Free space spreading loss
Lspl_dB = 2*fspl(R,freq2wavelen(freq)); % Factor of 2 for two-way

% Perform tropospheric losses calculation for a subset of elevation angles,

 Introduction to Modeling the Propagation of Radar Signals

1-601

% since the ray refracting can take a long time.
numEl = 10;
minEl = height2el(tgtht(1),anht,R(end)); % Min elevation angle (deg)
maxEl = height2el(tgtht(end),anht,R(1)); % Max elevation angle (deg)
elSubset = linspace(minEl,maxEl,numEl);
LtropoSubset = zeros(numEl,numR);
for ie = 1:numEl
 LtropoSubset(ie,:) = tropopl(R,freq,anht,elSubset(ie));
end
% Interpolate tropospheric losses for all elevation angles of interest
Ltropo = zeros(numHt,numR);
for ir = 1:numR
 el = height2el(tgtht,anht,R(ir));
 Ltropo(:,ir) = interp1(elSubset,LtropoSubset(:,ir),el);
end

PLdB = 2*F - Lspl_dB - Ltropo; % Factor of 2 for two-way
PLdBNorm = PLdB - max(PLdB(:));
end

helperPlotCombinedEnvLosses

function helperPlotCombinedEnvLosses(Rkm,freq,anht,tgtht,PLdBNorm)
% Plot combined losses for different heights and ranges
hP = pcolor(Rkm,tgtht,PLdBNorm);
set(hP, 'EdgeColor', 'none');
title([num2str(freq/1e9) ' GHz S-Band Radar'])
subtitle([num2str(round(anht)) ' m above water'])
xlabel('Range (km)')
ylabel('Height (m)')
colormap('jet');
caxis([-150 0])
hC = colorbar;
hC.Label.String = 'Normalized Two-Way Propagation Loss (dB)';
end

1 Featured Examples

1-602

Display Micro-Doppler Shift of Moving Bicyclist
sim('BicyclistMicrospectrumExample');
open_system('BicyclistMicrospectrumExample');

 Display Micro-Doppler Shift of Moving Bicyclist

1-603

Display the microDoppler spectrum.

close_system('BicyclistMicrospectrumExample');

1 Featured Examples

1-604

Radar Performance Analysis Over Terrain
The performance of a radar system is highly dependent on the environment in which it operates.
While the free space spreading loss may be such that the target signal-to-noise ratio (SNR) does not
satisfy the minimum detectability threshold for the desired probability of detection and probability of
false alarm, the detectability of a target may further suffer when terrain is considered as there may
be no direct, unobstructed line-of-sight from the radar to the target. As you will see in this example,
as the elevation of a target increases above the terrain, the radar has a better chance of detecting the
target.

In this example, you will learn how to analyze the performance of a ground-based, long-range
terminal airport surveillance radar tasked with detecting an aircraft in the presence of heavy,
mountainous clutter. The example first defines the radar system operating characteristics and its
global position. Next the target and its trajectory are defined. Finally, the detectability of the target
as it moves through its trajectory will be presented along with detailed visualizations.

This example requires the Mapping Toolbox.

Define Radar

To start, specify a C-band long-range, terminal airport surveillance radar with the following
parameters:

• Peak power: 1 kW
• Operating frequency: 6 GHz
• Transmit and receive antenna: 2 degrees in azimuth, 5 degrees in elevation
• Pulse width: 1 μs

rdrppower = 1e3; % Peak power (W)
fc = 6e9; % Operating frequency (Hz)
hpbw = [2; 5]; % Half-power beamwidth [azimuth; elevation] (deg)
rdrpulsew = 1e-6; % Pulse width (s)
lambda = freq2wavelen(fc); % Wavelength (m)

Convert the transmitter half-power beamwidth (HPBW) values to gain using the beamwidth2gain
function. Assume a cosine rectangular aperture, which is a good approximation for a real-world
antenna.

rdrgain = beamwidth2gain(hpbw,'CosineRectangular'); % Transmitter and receiver gain (dB)

Define the radar ground location as the Rocky Mountain Metropolitan Airport in Broomfield,
Colorado, USA. The radar is mounted on a tower 10 meters above the ground. The radar altitude is
the sum of the ground elevation and the radar tower height referenced to the mean sea level (MSL).

rdrlat = 39.913756; % Radar latitude (deg)
rdrlon = -105.118062; % Radar longitude (deg)
rdrtowerht = 10; % Antenna height (m)
rdralt = 1717 + rdrtowerht; % Radar altitude (m)

To visualize the radar location, import the relevant terrain data from the United States Geological
Survey (USGS).

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available from the U.S. Geological Survey.";
[Zterrain,Rterrain] = readgeoraster(dtedfile,"OutputType","double");

 Radar Performance Analysis Over Terrain

1-605

% Visualize the location using the geographic globe plot.
addCustomTerrain("southboulder",dtedfile,"Attribution",attribution);
fig = uifigure;
g = geoglobe(fig,"Terrain","southboulder");
hold(g,"on")
h_rdrtraj = geoplot3(g,rdrlat,rdrlon,rdralt,"ro","LineWidth",6,"MarkerSize",10);

Note that the limits for the file correspond to the region around Boulder, Colorado, USA, and the
resolution corresponds to DTED level-1, which has a sample resolution of 3 arc seconds or about 90
meters.

Define Target

Consider a large commercial aircraft as the target. Assume the aircraft trajectory is a corkscrew
maneuver, where the aircraft descends rapidly in a spiral.

tlat0 = 39.80384; % Target initial latitude (deg)
tlon0 = -105.49916; % Target initial longitude (deg)
tht0 = 3000; % Target initial height (m)
azs = 1:2:540; % Target azimuth (deg)
r = 5000; % Target slant range (m)

1 Featured Examples

1-606

% Convert from polar coordinates to Cartesian East, North, Up (ENU).
[X,Y] = pol2cart(deg2rad(azs),r);

% Convert ENU to geodetic.
Z = linspace(0,1000,numel(azs));
wgs84 = wgs84Ellipsoid;
[tlat,tlon,tht] = enu2geodetic(X,Y,Z,tlat0,tlon0,tht0,wgs84);

% Define the target altitude.
talt = tht - egm96geoid(tlat,tlon); % Target altitude (m)

For simplicity, assume the waypoints are obtained at a constant sampling rate of 0.1 Hz. The
trajectory can be generated using geoTrajectory with positions specified as latitude, longitude,
and altitude.

fs = 0.1;
t = (0:length(X)-1)/fs;
ttraj = geoTrajectory([tlat.' tlon.' talt.'],t,'SampleRate',fs);

The ground truth trajectory is plotted over the terrain as follows:

h_ttraj = geoplot3(g,tlat,tlon,talt,"yo","LineWidth",3);
campos(g,39.77114,-105.62662,6670)
camheading(g,70)
campitch(g,-12)

 Radar Performance Analysis Over Terrain

1-607

The radar cross section (RCS) for an aircraft is typically from 1 to 10 square meters. For this
example, consider the aircraft as an isotropic point target with an RCS of 10 square meters.

trcs = pow2db(10); % Target RCS (dBsm)

Simulate the Scenario

Now that the radar and target have been defined, build the scenario, which is composed of a terminal
airport radar and large commercial aircraft in the presence of mountainous clutter. Run the simulated
scenario for the duration of the aircraft trajectory.

scene = radarScenario('IsEarthCentered',true,'UpdateRate',fs,'StopTime',t(end));
rdrplatform = platform(scene,'Position',[rdrlat,rdrlon,rdralt],'Sensor',radarDataGenerator);
tplatform = platform(scene,'Trajectory',ttraj,'Signatures',...
 {rcsSignature('Azimuth',[-180 180],'Elevation',[-90 90],'Pattern',trcs)});

The line-of-sight path from the radar to the target is determined for each point in the target
trajectory. For locations where the aircraft is not occluded by the terrain, an SNR value is calculated
using the radar equation, including the propagation factor along the path.

The propagation factor is calculated using the radarpropfactor function. The default permittivity
model in radarpropfactor is based on a sea permittivity model in Blake's "Machine Plotting of
Radar Vertical-Plane Coverage Diagrams." Such a model is not applicable for the defined scenario.
Thus, the first step in simulating more realistic propagation is to select a more appropriate

1 Featured Examples

1-608

permittivity. Use the earthSurfacePermittivity function with the vegetation flag. Assume an
ambient temperature of 21.1 degrees Celsius, which is about 70 degrees Fahrenheit. Assume a
gravimetric water content of 0.3.

temp = 21.1; % Ambient temperature (degrees Celsius)
gwc = 0.3; % Gravimetric water content
[~,~,epsc] = earthSurfacePermittivity('vegetation',fc,temp,gwc);

Calculate the propagation factor using the radarpropfactor function. Include the following in the
calculation:

• Surface permittivity
• Standard deviation of height along the path
• Elevation beamwidth

tsnr = -inf(size(t));
F = zeros(size(t));
trange = zeros(size(t));
isVisible = false(size(t));
idx = 1;

while advance(scene)
 tpose = pose(tplatform,'CoordinateSystem','Geodetic');
 tpos = tpose.Position;
 [isVisible(idx),~,~,h] = los2(Zterrain,Rterrain,rdrlat,rdrlon, ...
 tpos(1),tpos(2),rdralt,tpos(3),"MSL","MSL");
 hgtStdDev = std(h);
 if isVisible(idx)
 trange(idx) = norm(tpos);
 F(idx) = radarpropfactor(trange(idx),fc,rdralt,tpos(3), ...
 'SurfaceRelativePermittivity',epsc,...
 'SurfaceHeightStandardDeviation',hgtStdDev, ...
 'ElevationBeamwidth',hpbw(2));
 end
 idx = idx+1;
end

Calculate the SNR along the trajectory.

tsnr(isVisible) = radareqsnr(lambda,trange(isVisible).',rdrppower,rdrpulsew,...
 'RCS',trcs,'Gain',rdrgain,'PropagationFactor',F(isVisible).');

Next, plot the SNR along the trajectory.

tsnr_finiteidx = ~isinf(tsnr);
tsnr_cidx = zeros(size(tsnr));
cmap = colormap(g);
numclvls = size(cmap,1);
tsnr_cidx(tsnr_finiteidx) = discretize(tsnr(tsnr_finiteidx),numclvls-1);
tsnr_cidx(~tsnr_finiteidx) = numclvls;

delete(h_ttraj);
hsnr = zeros(size(tsnr));
for m = 1:numel(tsnr)
 hsnr(m) = geoplot3(g,tlat(m),tlon(m),talt(m),'Marker','o','LineWidth',2,'MarkerSize',1);
 if tsnr_finiteidx(m)
 set(hsnr(m),'Color',cmap(tsnr_cidx(m),:));

 Radar Performance Analysis Over Terrain

1-609

 else
 set(hsnr(m),'Color','r');
 end
end

As the aircraft performs the corkscrew maneuver, the SNR of the received signal may vary, as shown
in the figure. The radar has an unobstructed view of the aircraft if there is a line-of-sight path. The
red portion of the trajectory indicates that there is no line-of-sight path between the aircraft and the
radar.

For our surveillance radar, the desired performance index is a probability of detection (Pd) of 0.9 and
probability of false alarm (Pfa) below 1e-6. To make the radar system design more feasible, we can
use a pulse integration technique to reduce the required SNR. For this system, we assume
noncoherent integration of 32 pulses. A good approximation of the minimum SNR needed for a
detection at the specified Pd and Pfa can be computed by the detectability function as

pd = 0.9;
pfa = 1e-6;
minsnr_32p = detectability(pd,pfa,32);
isdetectable_32p = tsnr >= minsnr_32p;

1 Featured Examples

1-610

We can now observe in which part of the trajectory the target is detectable (shown in green) given
the minimum SNR requirement. Note that the existence of a line-of-sight link does not guarantee that
the target is detectable.

for m = 1:numel(tsnr)
 if isdetectable_32p(m)
 set(hsnr(m),'Color','g');
 else
 set(hsnr(m),'Color','r');
 end
end

To improve detectability with surveillance radars, often radar engineers discuss maximizing the
power-aperture product of the system. This generally translates to increasing the physical size or
peak power of a system. It can also be considered in terms of illumination time (i.e., energy on
target). Some methods to improve detectability include:

• Increasing the peak power: This can be difficult to achieve due to limitations on the power supply
and on the radar platform location. Furthermore, if there is a requirement for low probability of
intercept (LPI), increasing peak power is often undesirable.

• Increasing the physical size of the antenna aperture: Increasing the physical size of the antenna
results in an increase in the associated gain and decrease in the half-power beamwidth.

 Radar Performance Analysis Over Terrain

1-611

Limitations of the platform or location may make increasing the physical size of the antenna
aperture infeasible. Additionally, with a finer beamwidth, it becomes more important that the
antenna beam is steered towards the target under test.

• Increasing the number of pulses to be integrated: This will bring the detectability to a lower value.
However, if the aircraft is maneuvering at a high speed, then it may take too long to collect all of
the transmitted pulses under the assumption of target stationarity. If the target stationarity
assumption is invalid, additional signal processing steps will need to be taken to mitigate the
range walk of the target.

• Increasing the average power: Rather than increasing the peak power, one can increase the
average power by increasing the duty cycle. Increasing the duty cycle means increasing either the
pulse width or the pulse repetition frequency (PRF), which may put undue burden on the radar
hardware. The downside to increasing the pulse width is an increase in the minimum range and
potentially overlapping, inseparable target returns. On the other hand, increasing the pulse
repetition frequency decreases the maximum unambiguous range, which may be undesirable for a
long-range surveillance system, especially if it is not performing a disambiguation technique.

The above list, while in no way exhaustive, demonstrates some of the tradeoffs in the design of an
terminal airport surveillance system. For this example, we will increase the peak power. Since this is
a ground-based system, we would not expect increasing the power to be too burdensome.
Additionally, other airport radars like the ASR-9 operate at a peak power of about 1 MW. Since this is
an airport radar, there is no need for LPI requirements.

Consider the case where the peak power is increased to 10 kW.

rdrppower = 10e3; % Peak power (W)

% Recalculate the SNR along the trajectory.
tsnr(isVisible) = radareqsnr(lambda,trange(isVisible).',rdrppower,rdrpulsew,...
 'RCS',trcs,'Gain',rdrgain,'PropagationFactor',F(isVisible).');

% Determine the regions of the trajectory that are now detectable given the
% newly updated SNR.
isdetectable_32p = tsnr >= minsnr_32p;

Notice that by increasing the peak power, the regions at the end of the trajectory that were
previously undetected now satisfy the minimum SNR threshold.

for m = 1:numel(tsnr)
 if isdetectable_32p(m)
 set(hsnr(m),'Color','g');
 else
 set(hsnr(m),'Color','r');
 end
end

1 Featured Examples

1-612

Summary

In this example, SNR is calculated and visualized for a ground-based, long-range terminal airport
surveillance radar tasked with detecting an aircraft in the presence of heavy, mountainous clutter.
The example showed how to calculate the line-of-sight given a target trajectory. We also learned that
the existence of a line-of-sight link does not necessarily guarantee that the target is detectable. This
example considered some design tradeoffs to improve target detectability, discussing how radar
parameters can be modified to match other system requirements. The example can be easily
extended for other aircraft, different trajectory sets, and different terrain maps.

% Clean up by closing the geographic globe and removing the imported
% terrain data.
if isvalid(fig)
 close(fig)
end
removeCustomTerrain("southboulder")

 Radar Performance Analysis Over Terrain

1-613

Transitioning From Statistical to Physics Based Radar Models
A radar is a perception system that uses an antenna or antenna array to capture RF energy, which is
then down converted and processed to provide information on objects in the radar's field of view. The
received signal needs to pass through both a signal processing subsystem and a data processing
subsystem.

The goal of the signal processing subsystem is to translate received IQ signals to target detections.
The data processing subsystem takes these detections and produces tracks corresponding to the
detected targets.

The signal processing subsystem helps to generate a snapshot of the scene at the current time and
includes information on whether an object is in the coverage and if so, where it is. The data
processing subsystem links those snapshots together so we can understand what happened over time.
This helps to obtain Doppler information in addition to predictions of where targets are heading.

Radar engineers that simulate and model algorithms and systems need to work across a range of
abstraction levels that span the signal and data processing domains. The level of abstraction depends
on the phase of the radar development life cycle, the length of the scene being simulated, and the
type of engineering work being performed.

At early stages of a project, as design trade-offs are being explored, modeling at the radar equation
level may be adequate. As a project progresses, it will be necessary to increase the level of model
fidelity, moving from a statistical level to signal level simulation. In addition, the length of a scenario
can dictate which modeling abstraction level makes sense. For example, for longer scenario times
(seconds, minutes, or longer), it may be better to generate statistical or probabilistic radar detections
and tracks to cover a mission or to test tracking and sensor fusion algorithms. Alternatively, higher
fidelity, physics-based simulations that include transmitted waveforms, signal propagation through
the environment, reflections off targets, and received signals at a receive array are needed for events
of interest or for when signal processing algorithms are being developed.

This example starts with a statistical model for a given scene and then the equivalent IQ signal level
model is created programmatically from the statistical model.

In the first portion of the example, we will build a statistical model and generate detections based on
the radar equation. In the second portion of the example, we create the equivalent IQ signal level
model for the same scenario and compare the results. This workflow is a very convenient way to get a
signal level model up and running quickly. Once the basic signal model is in place, it can be extended
as the project dictates.

Define the scene

To start, we define a scenario with fixed-location surveillance radar. There are three targets in the
radar?s field of view. The plot below shows the locations of the radar and targets.

% Create targets.

tgt1 = struct(...
 'PlatformID', 1, ...
 'Position', [0 -50e3 -1e3], ...
 'Velocity', [0 900*1e3/3600 0]);

tgt2 = struct(...
 'PlatformID', 2, ...

1 Featured Examples

1-614

 'Position', [20e3 0 -500], ...
 'Velocity', [700*1e3/3600 0 0]);

tgt3 = struct(...
 'PlatformID', 3, ...
 'Position', [-20e3 0 -500], ...
 'Velocity', [300*1e3/3600 0 0]);

tp = theaterPlot('XLim',[-30e3 30e3],'YLim',[-60e3 10e3],'ZLim',[-10e3 1e3]);
gtplot = platformPlotter(tp,'DisplayName','Target Ground Truth',...
 'Marker','^','MarkerSize',8,'MarkerFaceColor','r');
plotPlatform(gtplot,[tgt1.Position;tgt2.Position;tgt3.Position],...
 [tgt1.Velocity;tgt2.Velocity;tgt3.Velocity],{'Target1','Target2','Target3'});

Define Radar for Detection Generation

Next, we define an airport surveillance radar that generates detections from a statistical model. The
airport surveillance radar is installed 15 meters above the ground. The radar sensor definition
includes the key radar parameters such as scanning type and field of view information.

The radarDataGenerator generated detections statistically based on the radar equation.

% Create an airport surveillance radar 15 meters above the ground
rpm = 12.5;
fov = [1.4;5]; % [azimuth; elevation]

scanrate = rpm*360/60; % deg/s

 Transitioning From Statistical to Physics Based Radar Models

1-615

updaterate = scanrate/fov(1); % Hz

sensor = radarDataGenerator(1, 'Rotator', ...
 'UpdateRate', updaterate, ...
 'MountingLocation', [0 0 -15], ...
 'MaxAzimuthScanRate', scanrate, ...
 'FieldOfView', fov, ...
 'AzimuthResolution', fov(1));

radarPosition = [0 0 0];
radarVelocity = [0 0 0];
radarplot = platformPlotter(tp,'DisplayName','Radar',...
 'Marker','s','MarkerSize',8,'MarkerFaceColor','b');
plotPlatform(radarplot,radarPosition,radarVelocity,{'Radar'})

Generate Statistical Radar Detection

The code below simulates a full scan of the surveillance radar.

% Generate detections from a full scan of the radar
simTime = 0;
detBuffer = {};

rng(2020);
while true
 [dets, numDets, config] = sensor([tgt1 tgt2 tgt3], simTime);
 detBuffer = [detBuffer;dets]; %#ok<AGROW>

1 Featured Examples

1-616

 % Is full scan complete?
 if config.IsScanDone
 break % yes
 end
 simTime = simTime+1/sensor.UpdateRate;
end

stadetpos = zeros(numel(detBuffer),3);
for m = 1:numel(detBuffer)
 stadetpos(m,:) = detBuffer{m}.Measurement.';
end
stadet = detectionPlotter(tp,'DisplayName','Statistical Detection',...
 'Marker','d','MarkerSize',6,'MarkerFaceColor','g');
plotDetection(stadet,stadetpos)

From the figure above, you can see the detections generated match the ground truth target locations.
The three targets all indicated by a truth marker have a detection that is shown as an overlay on the
truth marker.

Define Radar for IQ Signal Generation and Processing

Next, assuming we are satisfied with the statistical level simulation, we would like to transition into
IQ signal simulation so we can verify if our signal processing algorithms are working properly. Using
the following command, we can easily create a radar transceiver that produces the IQ signal based on
the statistical sensor we configured earlier.

 Transitioning From Statistical to Physics Based Radar Models

1-617

sensor_iq = radarTransceiver(sensor)

sensor_iq =
 radarTransceiver with properties:

 Waveform: [1x1 phased.RectangularWaveform]
 Transmitter: [1x1 phased.Transmitter]
 TransmitAntenna: [1x1 phased.Radiator]
 ReceiveAntenna: [1x1 phased.Collector]
 Receiver: [1x1 phased.ReceiverPreamp]
 MechanicalScanMode: 'Circular'
 InitialMechanicalScanAngle: -0.1000
 MechanicalScanRate: 75
 ElectronicScanMode: 'None'
 MountingLocation: [0 0 -15]
 MountingAngles: [0 0 0]
 NumRepetitionsSource: 'Property'
 NumRepetitions: 1

Notice that the configuratin of the sensor_iq variable is more close to a physical system, like shown
below. All these configurations can be modified to do trade studies. he output of sensor_iq produces
IQ signals that can then be processed. In this example, a simple threshold is implemented to generate
the detections since our goal is to create the equivalent result we obtained in the first part of the
example.

% configure signal processing component

coeff = getMatchedFilter(sensor_iq.Waveform);
mf = phased.MatchedFilter('Coefficients',coeff,'GainOutputPort',true);

npower = noisepow(1/sensor_iq.Waveform.PulseWidth,...
sensor_iq.Receiver.NoiseFigure,sensor_iq.Receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(sensor.FalseAlarmRate));

fs = sensor_iq.Waveform.SampleRate;
prf = sensor_iq.Waveform.PRF;
c = physconst('lightspeed');
fc = sensor_iq.TransmitAntenna.OperatingFrequency;
lambda = c/fc;
Nsamp = round(fs/prf);
rgates = (0:Nsamp-1)/fs*c/2;
tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(rgates,lambda),...
 'ReferenceLoss',2*fspl(Nsamp/fs*c/2,lambda));

IQ Signal and Processing Simulation

Next, we can perform IQ simulation and check if our processing algorithm can give us simialr result
as our statistical sensor. Notice that simulation loop to generate the IQ signal is almost identical to
the loop that generates the statistical detection. Also shown in the loop is how to processing the IQ
signal to get the detection.

simTime = 0;
detBuffer_iq = {};

while true

1 Featured Examples

1-618

 [sig, config] = sensor_iq([tgt1 tgt2 tgt3], simTime);
 if config.IsScanDone
 break;
 end

 % Processing
 [sigp,Gmf] = mf(sig);
 sigp = tvg(sigp);

 th = sqrt(threshold*db2pow(Gmf));
 ind = abs(sigp)>th;
 if any(ind)
 [~,idx] = max(abs(sigp));
 rng_est = rgates(idx);
 meas_sensor = [0;0;rng_est];
 meas_body = local2globalcoord(meas_sensor,'sr',...
 config.OriginPosition,config.Orientation);
 dets_iq = struct('Time',simTime,'Measurement',meas_body);
 detBuffer_iq = [detBuffer_iq;dets_iq]; %#ok<AGROW>
 end

 simTime = simTime+1/updaterate;
end

iqdetpos = zeros(numel(detBuffer_iq),3);
for m = 1:numel(detBuffer)
 iqdetpos(m,:) = detBuffer_iq{m}.Measurement.';
end
iqdet = detectionPlotter(tp,'DisplayName','IQ Detection',...
 'Marker','o','MarkerSize',10,'MarkerEdgeColor','k');
plotDetection(iqdet,iqdetpos)

 Transitioning From Statistical to Physics Based Radar Models

1-619

The plot above clearly indicates that the reuslt obtained from IQ signal generation is similar to the
result generated from the statistical model.

Summary

In this example, we will built a statistical model to generate detections based on the radar equation.
We then created the equivalent IQ signal level model for the same scenario and compare the results.
This workflow is a very convenient way to get a signal level model up and running quickly. Once the
basic signal model is in place, it can be extended as the project dictates.

1 Featured Examples

1-620

Doppler Estimation
This example shows a monostatic pulse radar detecting the radial velocity of moving targets at
specific ranges. The speed is derived from the Doppler shift caused by the moving targets. We first
identify the existence of a target at a given range and then use Doppler processing to determine the
radial velocity of the target at that range.

Radar System Setup

First, we define a radar system. Since the focus of this example is on Doppler processing, we use the
radar system built in the example “Simulating Test Signals for a Radar Receiver”. Readers are
encouraged to explore the details of radar system design through that example.

load BasicMonostaticRadarExampleData;

System Simulation

Targets

Doppler processing exploits the Doppler shift caused by the moving target. We now define three
targets by specifying their positions, radar cross sections (RCS), and velocities.

tgtpos = [[1200; 1600; 0],[3543.63; 0; 0],[1600; 0; 1200]];
tgtvel = [[60; 80; 0],[0;0;0],[0; 100; 0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);

tgtrcs = [1.3 1.7 2.1];
fc = radiator.OperatingFrequency;
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

Note that the first and third targets are both located at a range of 2000 m and are both traveling at a
speed of 100 m/s. The difference is that the first target is moving along the radial direction, while the
third target is moving in the tangential direction. The second target is not moving.

Environment

We also need to setup the propagation environment for each target. Since we are using a monostatic
radar, we use the two way propagation model.

fs = waveform.SampleRate;

channel = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Signal Synthesis

With the radar system, the environment, and the targets defined, we can now simulate the received
signal as echoes reflected from the targets. The simulated data is a data matrix with the fast time
(time within each pulse) along each column and the slow time (time between pulses) along each row.

We need to set the seed for noise generation at the receiver so that we can reproduce the same
results.

receiver.SeedSource = 'Property';
receiver.Seed = 2009;

 Doppler Estimation

1-621

https://www.mathworks.com/discovery/radar-system-design.html

prf = waveform.PRF;
num_pulse_int = 10;

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;

% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),num_pulse_int);

for m = 1:num_pulse_int

 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig);

 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
end

Doppler Estimation

Range Detection

To be able to estimate the Doppler shift of the targets, we first need to locate the targets through
range detection. Because the Doppler shift spreads the signal power into both I and Q channels, we
need to rely on the signal energy to do the detection. This means that we use noncoherent detection
schemes.

The detection process is described in detail in the aforementioned example so we simply perform the
necessary steps here to estimate the target ranges.

% calculate initial threshold
pfa = 1e-6;
% in loaded system, noise bandwidth is half of the sample rate
noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
 receiver.NoiseFigure,receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));

% apply matched filter and update the threshold
matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
 'Coefficients',matchingcoeff,...
 'GainOutputPort',true);

1 Featured Examples

1-622

[rxpulses, mfgain] = matchedfilter(rxpulses);
threshold = threshold * db2pow(mfgain);

% compensate the matched filter delay
matchingdelay = size(matchingcoeff,1)-1;
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));

% apply time varying gain to compensate the range dependent loss
prop_speed = radiator.PropagationSpeed;
range_gates = prop_speed*fast_time_grid/2;
lambda = prop_speed/fc;

tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(range_gates,lambda),...
 'ReferenceLoss',2*fspl(prop_speed/(prf*2),lambda));

rxpulses = tvg(rxpulses);

% detect peaks from the integrated pulse
[~,range_detect] = findpeaks(pulsint(rxpulses,'noncoherent'),...
 'MinPeakHeight',sqrt(threshold));
range_estimates = round(range_gates(range_detect))

range_estimates = 1×2

 2000 3550

These estimates suggest the presence of targets in the range of 2000 m and 3550 m.

Doppler Spectrum

Once we successfully estimated the ranges of the targets, we can then estimate the Doppler
information for each target.

Doppler estimation is essentially a spectrum estimation process. Therefore, the first step in Doppler
processing is to generate the Doppler spectrum from the received signal.

The received signal after the matched filter is a matrix whose columns correspond to received pulses.
Unlike range estimation, Doppler processing processes the data across the pulses (slow time), which
is along the rows of the data matrix. Since we are using 10 pulses, there are 10 samples available for
Doppler processing. Because there is one sample from each pulse, the sampling frequency for the
Doppler samples is the pulse repetition frequency (PRF).

As predicted by the Fourier theory, the maximum unambiguous Doppler shift a pulse radar system
can detect is half of its PRF. This also translates to the maximum unambiguous speed a radar system
can detect. In addition, the number of pulses determines the resolution in the Doppler spectrum,
which determines the resolution of the speed estimates.

max_speed = dop2speed(prf/2,lambda)/2

max_speed = 224.6888

speed_res = 2*max_speed/num_pulse_int

speed_res = 44.9378

As shown in the calculation above, in this example, the maximum detectable speed is 225m/s, either
approaching (-225) or departing (+225). The resulting Doppler resolution is about 45 m/s, which

 Doppler Estimation

1-623

means that the two speeds must be at least 45 m/s apart to be separable in the Doppler spectrum. To
improve the ability to discriminate between different target speeds, more pulses are needed.
However, the number of pulses available is also limited by the radial velocity of the target. Since the
Doppler processing is limited to a given range, all pulses used in the processing have to be collected
before the target moves from one range bin to the next.

Because the number of Doppler samples are in general limited, it is common to zero pad the
sequence to interpolate the resulting spectrum. This will not improve the resolution of the resulting
spectrum, but can improve the estimation of the locations of the peaks in the spectrum.

The Doppler spectrum can be generated using a periodogram. We zero pad the slow time sequence to
256 points.

num_range_detected = numel(range_estimates);
[p1, f1] = periodogram(rxpulses(range_detect(1),:).',[],256,prf, ...
 'power','centered');
[p2, f2] = periodogram(rxpulses(range_detect(2),:).',[],256,prf, ...
 'power','centered');

The speed corresponding to each sample in the spectrum can then be calculated. Note that we need
to take into consideration of the round trip effect.

speed_vec = dop2speed(f1,lambda)/2;

Doppler Estimation

To estimate the Doppler shift associated with each target, we need to find the locations of the peaks
in each Doppler spectrum. In this example, the targets are present at two different ranges, so the
estimation process needs to be repeated for each range.

Let's first plot the Doppler spectrum corresponding to the range of 2000 meters.

periodogram(rxpulses(range_detect(1),:).',[],256,prf,'power','centered');

1 Featured Examples

1-624

Note that we are only interested in detecting the peaks, so the spectrum values themselves are not
critical. From the plot of Doppler spectrum, we notice that 5 dB below the maximum peak is a good
threshold. Therefore, we use -5 as our threshold on the normalized Doppler spectrum.

spectrum_data = p1/max(p1);
[~,dop_detect1] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp1 = speed_vec(dop_detect1)

sp1 = 2×1

 -103.5675
 3.5108

The results show that there are two targets at the 2000 m range: one with a velocity of 3.5 m/s and
the other with -104 m/s. The value -104 m/s can be easily associated with the first target, since the
first target is departing at a radial velocity of 100 m/s, which, given the Doppler resolution of this
example, is very close to the estimated value. The value 3.5 m/s requires more explanation. Since the
third target is moving along the tangential direction, there is no velocity component in the radial
direction. Therefore, the radar cannot detect the Doppler shift of the third target. The true radial
velocity of the third target, hence, is 0 m/s and the estimate of 3.5 m/s is very close to the true value.

Note that these two targets cannot be discerned using only range estimation because their range
values are the same.

The same operations are then applied to the data corresponding to the range of 3550 meters.

 Doppler Estimation

1-625

periodogram(rxpulses(range_detect(2),:).',[],256,prf,'power','centered');

spectrum_data = p2/max(p2);
[~,dop_detect2] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp2 = speed_vec(dop_detect2)

sp2 = 0

This result shows an estimated speed of 0 m/s, which matches the fact that the target at this range is
not moving.

Summary

This example showed a simple way to estimate the radial speed of moving targets using a pulse radar
system. We generated the Doppler spectrum from the received signal and estimated the peak
locations from the spectrum. These peak locations correspond to the target's radial speed. The
limitations of the Doppler processing are also discussed in the example.

1 Featured Examples

1-626

Constant False Alarm Rate (CFAR) Detection
This example introduces constant false alarm rate (CFAR) detection and shows how to use
CFARDetector and CFARDetector2D in the Phased Array System Toolbox™ to perform cell averaging
CFAR detection.

Introduction

One important task a radar system performs is target detection. The detection itself is fairly
straightforward. It compares the signal to a threshold. Therefore, the real work on detection is
coming up with an appropriate threshold. In general, the threshold is a function of both the
probability of detection and the probability of false alarm.

In many phased array systems, because of the cost associated with a false detection, it is desirable to
have a detection threshold that not only maximizes the probability of detection but also keeps the
probability of false alarm below a preset level.

There is extensive literature on how to determine the detection threshold. Readers might be
interested in the “Signal Detection in White Gaussian Noise” and “Signal Detection Using Multiple
Samples” examples for some well known results. However, all these classical results are based on
theoretical probabilities and are limited to white Gaussian noise with known variance (power). In real
applications, the noise is often colored and its power is unknown.

CFAR technology addresses these issues. In CFAR, when the detection is needed for a given cell,
often termed as the cell under test (CUT), the noise power is estimated from neighboring cells. Then
the detection threshold, T, is given by

T = αPn

where Pn is the noise power estimate and α is a scaling factor called the threshold factor.

From the equation, it is clear that the threshold adapts to the data. It can be shown that with the
appropriate threshold factor, α, the resulting probability of false alarm can be kept at a constant,
hence the name CFAR.

Cell Averaging CFAR Detection

The cell averaging CFAR detector is probably the most widely used CFAR detector. It is also used as a
baseline comparison for other CFAR techniques. In a cell averaging CFAR detector, noise samples are
extracted from both leading and lagging cells (called training cells) around the CUT. The noise
estimate can be computed as [1]

Pn = 1
N ∑

m = 1

N
xm

where N is the number of training cells and xm is the sample in each training cell. If xm happens to be
the output of a square law detector, then Pn represents the estimated noise power. In general, the
number of leading and lagging training cells are the same. Guard cells are placed adjacent to the
CUT, both and leading and lagging it. The purpose of these guard cells is to avoid signal components
from leaking into the training cell, which could adversely affect the noise estimate.

The following figure shows the relation among these cells for the 1-D case.

 Constant False Alarm Rate (CFAR) Detection

1-627

With the above cell averaging CFAR detector, assuming the data passed into the detector is from a
single pulse, i.e., no pulse integration involved, the threshold factor can be written as [1]

α = N(Pf a
−1/N − 1)

where Pf a is the desired false alarm rate.

CFAR Detection Using Automatic Threshold Factor

In the rest of this example, we show how to use Phased Array System Toolbox to perform a cell
averaging CFAR detection. For simplicity and without losing any generality, we still assume that the
noise is white Gaussian. This enables the comparison between the CFAR and classical detection
theory.

We can instantiate a CFAR detector using the following command

cfar = phased.CFARDetector('NumTrainingCells',20,'NumGuardCells',2);

In this detector we use 20 training cells and 2 guard cells in total. This means that there are 10
training cells and 1 guard cell on each side of the CUT. As mentioned above, if we assume that the
signal is from a square law detector with no pulse integration, the threshold can be calculated based
on the number of training cells and the desired probability of false alarm. Assuming the desired false
alarm rate is 0.001, we can configure the CFAR detector as follows so that this calculation can be
carried out.

exp_pfa = 1e-3;
cfar.ThresholdFactor = 'Auto';
cfar.ProbabilityFalseAlarm = exp_pfa;

The configured CFAR detector is shown below.

cfar

cfar =
 phased.CFARDetector with properties:

 Method: 'CA'
 NumGuardCells: 2
 NumTrainingCells: 20
 ThresholdFactor: 'Auto'
 ProbabilityFalseAlarm: 1.0000e-03
 OutputFormat: 'CUT result'

1 Featured Examples

1-628

 ThresholdOutputPort: false
 NoisePowerOutputPort: false

We now simulate the input data. Since the focus is to show that the CFAR detector can keep the false
alarm rate under a certain value, we just simulate the noise samples in those cells. Here are the
settings:

• The data sequence is 23 samples long, and the CUT is cell 12. This leaves 10 training cells and 1
guard cell on each side of the CUT.

• The false alarm rate is calculated using 100 thousand Monte Carlo trials

rs = RandStream('mt19937ar','Seed',2010);
npower = db2pow(-10); % Assume 10dB SNR ratio

Ntrials = 1e5;
Ncells = 23;
CUTIdx = 12;

% Noise samples after a square law detector
rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
x = abs(sqrt(npower/2)*rsamp).^2;

To perform the detection, pass the data through the detector. In this example, there is only one CUT,
so the output is a logical vector containing the detection result for all the trials. If the result is true, it
means that a target is present in the corresponding trial. In our example, all detections are false
alarms because we are only passing in noise. The resulting false alarm rate can then be calculated
based on the number of false alarms and the number of trials.

x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 9.4000e-04

The result shows that the resulting probability of false alarm is below 0.001, just as we specified.

CFAR Detection Using Custom Threshold Factor

As explained in the earlier part of this example, there are only a few cases in which the CFAR
detector can automatically compute the appropriate threshold factor. For example, using the previous
scenario, if we employ a 10-pulses noncoherent integration before the data goes into the detector, the
automatic threshold can no longer provide the desired false alarm rate.

npower = db2pow(-10); % Assume 10dB SNR ratio
xn = 0;
for m = 1:10
 rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
 xn = xn + abs(sqrt(npower/2)*rsamp).^2; % noncoherent integration
end
x_detected = cfar(xn,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 0

One may be puzzled why we think a resulting false alarm rate of 0 is worse than a false alarm rate of
0.001. After all, isn't a false alarm rate of 0 a great thing? The answer to this question lies in the fact
that when the probability of false alarm is decreased, so is the probability of detection. In this case,

 Constant False Alarm Rate (CFAR) Detection

1-629

because the true false alarm rate is far below the allowed value, the detection threshold is set too
high. The same probability of detection can be achieved with our desired probability of false alarm at
lower cost; for example, with lower transmitter power.

In most cases, the threshold factor needs to be estimated based on the specific environment and
system configuration. We can configure the CFAR detector to use a custom threshold factor, as shown
below.

release(cfar);
cfar.ThresholdFactor = 'Custom';

Continuing with the pulse integration example and using empirical data, we found that we can use a
custom threshold factor of 2.35 to achieve the desired false alarm rate. Using this threshold, we see
that the resulting false alarm rate matches the expected value.

cfar.CustomThresholdFactor = 2.35;
x_detected = cfar(xn,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 9.6000e-04

CFAR Detection Threshold

A CFAR detection occurs when the input signal level in a cell exceeds the threshold level. The
threshold level for each cell depends on the threshold factor and the noise power in that derived from
training cells. To maintain a constant false alarm rate, the detection threshold will increase or
decrease in proportion to the noise power in the training cells. Configure the CFAR detector to output
the threshold used for each detection using the ThresholdOutputPort property. Use an automatic
threshold factor and 200 training cells.

release(cfar);
cfar.ThresholdOutputPort = true;
cfar.ThresholdFactor = 'Auto';
cfar.NumTrainingCells = 200;

Next, create a square-law input signal with increasing noise power.

rs = RandStream('mt19937ar','Seed',2010);
Npoints = 1e4;
rsamp = randn(rs,Npoints,1)+1i*randn(rs,Npoints,1);
ramp = linspace(1,10,Npoints)';
xRamp = abs(sqrt(npower*ramp./2).*rsamp).^2;

Compute detections and thresholds for all cells in the signal.

[x_detected,th] = cfar(xRamp,1:length(xRamp));

Next, compare the CFAR threshold to the input signal.

plot(1:length(xRamp),xRamp,1:length(xRamp),th,...
 find(x_detected),xRamp(x_detected),'o')
legend('Signal','Threshold','Detections','Location','Northwest')
xlabel('Time Index')
ylabel('Level')

1 Featured Examples

1-630

Here, the threshold increases with the noise power of the signal to maintain the constant false alarm
rate. Detections occur where the signal level exceeds the threshold.

Comparison Between CFAR and Classical Neyman-Pearson Detector

In this section, we compare the performance of a CFAR detector with the classical detection theory
using the Neyman-Pearson principle. Returning to the first example and assuming the true noise
power is known, the theoretical threshold can be calculated as

T_ideal = npower*db2pow(npwgnthresh(exp_pfa));

The false alarm rate of this classical Neyman-Pearson detector can be calculated using this
theoretical threshold.

act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials

act_Pfa_np = 9.5000e-04

Because we know the noise power, classical detection theory also produces the desired false alarm
rate. The false alarm rate achieved by the CFAR detector is similar.

release(cfar);
cfar.ThresholdOutputPort = false;
cfar.NumTrainingCells = 20;
x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 9.4000e-04

 Constant False Alarm Rate (CFAR) Detection

1-631

Next, assume that both detectors are deployed to the field and that the noise power is 1 dB more than
expected. In this case, if we use the theoretical threshold, the resulting probability of false alarm is
four times more than what we desire.

npower = db2pow(-9); % Assume 9dB SNR ratio
rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
x = abs(sqrt(npower/2)*rsamp).^2;
act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials

act_Pfa_np = 0.0041

On the contrary, the CFAR detector's performance is not affected.

x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 0.0011

Hence, the CFAR detector is robust to noise power uncertainty and better suited to field applications.

Finally, use a CFAR detection in the presence of colored noise. We first apply the classical detection
threshold to the data.

npower = db2pow(-10);
fcoeff = maxflat(10,'sym',0.2);
x = abs(sqrt(npower/2)*filter(fcoeff,1,rsamp)).^2; % colored noise
act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials

act_Pfa_np = 0

Note that the resulting false alarm rate cannot meet the requirement. However, using the CFAR
detector with a custom threshold factor, we can obtain the desired false alarm rate.

release(cfar);
cfar.ThresholdFactor = 'Custom';
cfar.CustomThresholdFactor = 12.85;
x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 0.0010

CFAR Detection For Range-Doppler Images

In the previous sections, the noise estimate was computed from training cells leading and lagging the
CUT in a single dimension. We can also perform CFAR detection on images. Cells correspond to pixels
in the images, and guard cells and training cells are placed in bands around the CUT. The detection
threshold is computed from cells in the rectangular training band around the CUT.

1 Featured Examples

1-632

In the figure above, the guard band size is [2 2] and the training band size is [4 3]. The size indices
refer to the number of cells on each side of the CUT in the row and columns dimensions, respectively.
The guard band size can also be defined as 2, since the size is the same along row and column
dimensions.

Next, create a two-dimensional CFAR detector. Use a probability of false alarm of 1e-5 and specify a
guard band size of 5 cells and a training band size of 10 cells.

cfar2D = phased.CFARDetector2D('GuardBandSize',5,'TrainingBandSize',10,...
 'ProbabilityFalseAlarm',1e-5);

Next, load and plot a range-doppler image. The image includes returns from two stationary targets
and one target moving away from the radar.

[resp,rngGrid,dopGrid] = helperRangeDoppler;

 Constant False Alarm Rate (CFAR) Detection

1-633

Use CFAR to search the range-doppler space for objects, and plot a map of the detections. Search
from -10 to 10 kHz and from 1000 to 4000 m. First, define the cells under test for this region.

[~,rangeIndx] = min(abs(rngGrid-[1000 4000]));
[~,dopplerIndx] = min(abs(dopGrid-[-1e4 1e4]));
[columnInds,rowInds] = meshgrid(dopplerIndx(1):dopplerIndx(2),...
 rangeIndx(1):rangeIndx(2));
CUTIdx = [rowInds(:) columnInds(:)]';

Compute a detection result for each cell under test. Each pixel in the search region is a cell in this
example. Plot a map of the detection results for the range-doppler image.

detections = cfar2D(resp,CUTIdx);
helperDetectionsMap(resp,rngGrid,dopGrid,rangeIndx,dopplerIndx,detections)

1 Featured Examples

1-634

The three objects are detected. A data cube of range-doppler images over time can likewise be
provided as the input signal to cfar2D, and detections will be calculated in a single step.

Summary

In this example, we presented the basic concepts behind CFAR detectors. In particular, we explored
how to use the Phased Array System Toolbox to perform cell averaging CFAR detection on signals and
range-doppler images. The comparison between the performance offered by a cell averaging CFAR
detector and a detector equipped with the theoretically calculated threshold shows clearly that the
CFAR detector is more suitable for real field applications.

Reference

[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005

 Constant False Alarm Rate (CFAR) Detection

1-635

Waveform Parameter Extraction from Received Pulse
Modern aircraft often carry a radar warning receiver (RWR) with them. The RWR detects the radar
emission and warns the pilot when the radar signal shines on the aircraft. An RWR can not only
detect the radar emission, but also analyze the intercepted signal and catalog what kind of radar is
the signal coming from. This example shows how an RWR can estimate the parameters of intercepted
pulse. The example simulates a scenario with a ground surveillance radar (emitter) and a flying
aircraft (target) equipped with an RWR. The RWR intercepts radar signals, extracts the waveform
parameters from the intercepted pulse, and estimates the location of the emitter. The extracted
parameters can be utilized by the aircraft to take counter-measures.

This example requires Image Processing Toolbox™

Introduction

An RWR is a passive electronic warfare support system [1] that provides timely information to the
pilot about its RF signal environment. The RWR intercepts an impinging signal, and uses signal
processing techniques to extract information about the intercepted waveform characteristics, as well
as the location of the emitter. This information can be used to invoke counter-measures, such as
jamming to avoid being detected by the radar. The interaction between the radar and the aircraft is
depicted in the following diagram.

1 Featured Examples

1-636

In this example, we simulate a scenario where a ground surveillance radar and an airplane with an
RWR present. The RWR detects the radar signal and extracts the following waveform parameters
from the intercepted signal:

1 Pulse repetition interval
2 Center frequency
3 Bandwidth
4 Pulse duration
5 Direction of arrival
6 Position of the emitter

The RWR chain consists of a phased array antenna, a channelized receiver, an envelope detector, and
a signal processor. The frequency band of the intercepted signal is estimated by the channelized
receiver and the envelope detector, following which the detected sub-banded signal is fed to the
signal processor. Beam steering is applied towards the direction of arrival of this sub-banded signal,
and the waveform parameters are estimated using pseudo Wigner-Ville transform in conjunction with
Hough transform. Using angle of arrival and single-baseline approach, the location of the emitter is
also estimated.

Scenario Setup

Assume the ground based surveillance radar operates in the L band, and transmits chirp signals of 3
μs duration at a pulse repetition interval of 15 μs. Bandwidth of the transmitted chirp is 30 MHz, and
the carrier frequency is 1.8 GHz. The surveillance radar is located at the origin and is stationary, and
the aircraft is flying at a constant speed of 200 m/s (~0.6 Mach).

% Define the transmitted waveform parameters
fs = 4e9; % Sampling frequency for the systems (Hz)
fc = 1.8e9; % Operating frequency of the surveillance radar (Hz)
T = 3e-6; % Chirp duration (s)
PRF = 1/(15e-6); % Pulse repetition frequency (Hz)
BW = 30e6; % Chirp bandwidth (Hz)
c= physconst('LightSpeed'); % Speed of light in air (m/s)

% Assume the surveillance radar is at the origin and is stationary
radarPos= [0;0;0]; % Radar position (m)
radarVel= [0;0;0]; % Radar speed (m/s)

% Assume aircraft is moving with constant velocity
rwrPos= [-3000;1000;1000]; % Aircraft position (m)
rwrVel= [200; 0; 0]; % Aircraft speed (m/s)

% Configure objects to model ground radar and aircraft's relative motion
rwrPose = phased.Platform(rwrPos, rwrVel);
radarPose = phased.Platform(radarPos, radarVel);

The transmit antenna of the radar is a 8x8 uniform rectangular phased array, having a spacing of λ/2
between its elements. The signal propagates from the radar to the aircraft and is intercepted and
analyzed by the RWR. For simplicity, the waveform is chosen as a linear FM waveform with a peak
power of 100 W.

% Configure the LFM waveform using the waveform parameters defined above
wavGen= phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',T,'SweepBandwidth',BW,'PRF',PRF);

 Waveform Parameter Extraction from Received Pulse

1-637

% Configure the Uniform Rectangular Array
antennaTx = phased.URA('ElementSpacing',repmat((c/fc)/2, 1, 2), 'Size', [8,8]);

% Configure objects for transmitting and propagating the radar signal
tx = phased.Transmitter('Gain', 5, 'PeakPower',100);
radiator = phased.Radiator('Sensor', antennaTx, 'OperatingFrequency', fc);
envIn = phased.FreeSpace('TwoWayPropagation',false,'SampleRate', fs,'OperatingFrequency',fc);

The ground surveillance radar is unaware of the direction of the target, therefore, it needs to scan
the entire space to look for aircraft. In general, the radar will transmit a series of pulses at each
direction before moving to the next direction. Therefore, without losing generality, this example
assumes that the radar is transmitting toward zero degrees azimuth and elevation. The following
figure shows the time frequency representation of a 4-pulse train arrived at the aircraft. Note that
although the pulse train arrives at a specific delay, the time delay of the arrival of the first pulse is
irrelevant for the RWR because it has no knowledge transmit time and has to constantly monitor its
environment

% Transmit a train of pulses
numPulses = 4;
txPulseTrain = helperRWR('simulateTransmission',numPulses, wavGen, rwrPos,...
 radarPos, rwrVel, radarVel, rwrPose, radarPose, tx, radiator, envIn,fs,fc,PRF);

% Observe the signal arriving at the RWR
pspectrum(txPulseTrain,fs,'spectrogram','FrequencyLimits',[1.7e9 1.9e9], 'Leakage',0.65)
title('Transmitted pulse train spectrogram'); caxis([-110 -90]);

1 Featured Examples

1-638

The RWR is equipped with a 10x10 uniform rectangular array with a spacing of λ/2 between its
elements. It operates in the entire L-band, with a center frequency of 2 GHz. The RWR listens to the
environment, and continuously feeds the collected data into the processing chain.

% Configure the receive antenna
dip = phased.IsotropicAntennaElement('BackBaffled',true);
antennaRx = phased.URA('ElementSpacing',repmat((c/2e9)/2,1,2),'Size', [10,10],'Element',dip);

% Model the radar receiver chain
collector = phased.Collector('Sensor', antennaRx,'OperatingFrequency',fc);
rx = phased.ReceiverPreamp('Gain',0,'NoiseMethod','Noise power', 'NoisePower',2.5e-6,'SeedSource','Property', 'Seed',2018);

% Collect the waves at the receiver
[~, tgtAng] = rangeangle(radarPos,rwrPos);
yr = collector(txPulseTrain,tgtAng);
yr = rx(yr);

RWR envelope detector

The envelope detector in the RWR is responsible for detecting the presence of any signal. As the RWR
is continuously receiving data, the receiver chain buffers and truncates the received data into 50 μs
segments.

% Truncate the received data
truncTime = 50e-6;
truncInd = round(truncTime*fs);
yr = yr(1:truncInd,:);

Since the RWR has no knowledge about the exact center frequency used in the transmit waveform, it
first uses a bank of filters, each tuned to a slightly different RF center frequency, to divide the
received data into subbands. Then the envelope detector is applied in each band to check whether a
signal presents. In this example, the signal is divided into sub-bands of 100 MHz bandwidth. An
added benefit for such operation is that instead of sampling the entire bandwidth covered by the
RWR, the signal in each subband can be down-sampled to a sampling frequency of 100 MHz.

% Define the bandwidth of each frequency sub-band
stepFreq = 100e6;

% Calculate number of sub-bands and configure dsp.Channelizer
numChan = fs/stepFreq;
channelizer = dsp.Channelizer('NumFrequencyBands', numChan, 'StopbandAttenuation', 80);

The plot below shows the first four band created by the filter bank.

% Visualize the first four filters created in the filter bank of the
% channelizer
freqz(channelizer, 1:4)
title('Zoomed Channelizer response for first four filters')
xlim([0 0.2])

 Waveform Parameter Extraction from Received Pulse

1-639

% Pass the received data through the channelizer
subData = channelizer(yr);

The received data, subData, has 3 dimensions. The first dimension represents the fast-time, the
second dimension represents the sub-bands, and the third dimension corresponds to the receiving
elements of the receiving array. For the RWR's 10x10 antenna configuration used in this example, we
have 100 receiving elements. Because the transmit power is low and the receiver noise is high, the
radar signal is indistinguishable from the noise. Therefore the received power are summed across
these elements to enhance the signal-to-nose ratio (SNR) and get a better estimates of the power in
each subband. The band that has the maximum power is the one used by the radar.

% Rearrange the subData to combine the antenna array channels only
incohsubData = pulsint(permute(subData,[1,3,2]),'noncoherent');
incohsubData = squeeze(incohsubData);

% Plot power distribution
subbandPow = pow2db(rms(incohsubData,1).^2)+30;
plot(subbandPow);
xlabel('Band Index');
ylabel('Power (dBm)');

1 Featured Examples

1-640

% Find the sub-band with maximum power
[~,detInd] = max(subbandPow);

RWR signal processor

Although the power in the selected band is higher compared to the neighboring band, the SNR within
the band is still low, as shown in the following figure.

subData = (subData(:,detInd,:));
subData = squeeze(subData); %adjust the data to 2-D matrix

% Visualize the detected sub-band data
plot(mag2db(abs(sum(subData,2)))+30)
ylabel('Power (dBm)')
title('Detected sub-band from 100 channels combined incoherently')

 Waveform Parameter Extraction from Received Pulse

1-641

% Find the original starting frequency of the sub-band having the detected
% signal
detfBand = fs*(detInd-1)/(fs/stepFreq);

% Update the sampling frequency to the decimated frequency
fs = stepFreq;

The subData is now a two-dimensional matrix. The first dimension represents fast-time samples and
the second dimension is the data across 100 receiving antenna channels. The detected sub-band
starting frequency is calculated to find the carrier frequency of the detected signal.

The next step for the RWR is to find the direction from which the radio waves are arriving. This angle
of arrival information would be used to steer the receive antenna beam in the direction of the emitter,
and locate the emitter on the ground using single base-line approach. The RWR estimates the
direction of arrival using a two dimensional MUSIC estimator. Beam steering is done using phase-
shift beamformer to achieve maximum SNR of the signal, thus help the waveform parameter
extraction.

Assume that ground plane is flat and parallel to the xy-plane of the coordinate system. such, the RWR
can use the altitude information from its altimeter readings of the aircraft along with the direction of
arrival to triangulate the location of the emitter.

% Configure the MUSIC Estimator to find the direction of arrival of the
% signal
doaEst = phased.MUSICEstimator2D('OperatingFrequency',fc,'PropagationSpeed',c,...
 'SensorArray',antennaRx,'DOAOutputPort',true,'AzimuthScanAngles',-50:.5:50,...
 'ElevationScanAngles',-50:.5:50, 'NumSignalsSource', 'Property','NumSignals', 1);

1 Featured Examples

1-642

[mSpec,doa] = doaEst(subData);
plotSpectrum(doaEst,'Title','2-D MUSIC Spatial Spectrum Top view');
view(0,90); axis([-30 0 -30 0]);

The figure clearly shows the location of the emitter.

% Configure the beamformer object to steer the beam before combining the
% channels
beamformer = phased.PhaseShiftBeamformer('SensorArray',antennaRx,...
 'OperatingFrequency',fc,'DirectionSource','Input port');

% Apply the beamforming, and visualize the beam steered radiation
% pattern
mBeamf = beamformer(subData, doa);

% Find the location of the emitter
altimeterElev = rwrPos(3);
d = abs(altimeterElev/sind(doa(2)));

After applying the beam steering, the antenna has the maximum gain in the azimuth and elevation
angle of arrival of the signal. This further improves the SNR of the intercepted signal. Next, the
signal parameters are extracted in the signal processor using one of the time-frequency analysis
techniques known as pseudo Wigner-Ville transform coupled with Hough transform as described in
[2].

First, derive the time frequency representation of the intercepted signal using Wigner-Ville transform.

 Waveform Parameter Extraction from Received Pulse

1-643

% Compute the pseudo Wigner-Ville transform
[tpwv,t,f] = helperRWR('pWignerVille',mBeamf,fs);

% Plot the pseudo Wigner-Ville transform
imagesc(f*1e-6,t*1e6,pow2db(abs(tpwv./max(tpwv(:)))));
xlabel('Frequency (MHz)'); ylabel('Time(\mus)');
caxis([-50 0]); clb = colorbar; clb.Label.String = 'Normalized Power (dB)';
title ('Pseudo Wigner-Ville Transform')

Using human eyes, even though the resulting time frequency representation is noisy, it is not too hard
to separate the signal from the background. Each pulse appears as a line in the time frequency plane.
Thus, using beginning and end of the time-frequency lines, we can derive the pulse width and the
bandwidth of the pulse. Similarly, the time between lines from different pulses gives us the pulse
repetition interval.

To do this automatically without relying on human eyes, we use Hough transform to identify those
lines from the image. The Hough transform can perform well in the presence of noise, and is an
enhancement to the time-frequency signal analysis method.

To use Hough transform, it is necessary to convert the time frequency image into a binary image.
Next code snippet performs some data smoothing on the image and then use imbinarize to do the
conversion. The conversion threshold can be modified based on the signal-noise characteristics of the
receiver and the operating environment.

% Normalize the pseudo Wigner-Ville image
twvNorm = abs(tpwv)./max(abs(tpwv(:)));

1 Featured Examples

1-644

% Implement a median filter to clear the noise
filImag = medfilt2(twvNorm,[7 7]);

% Use threshold to convert filtered image into binary image
BW = imbinarize(filImag./max(filImag(:)), 0.15);
imagesc(f*1e-6,t*1e6,BW); colormap('gray');
xlabel('Frequency (MHz)'); ylabel('Time(\mus)');
title ('Pseudo Wigner-Ville Transform - BW')

Using Hough transform, the binary pseudo Wigner-Ville image are first transformed to peaks. This
way, instead of detecting the line in an image, we just need to detect a peak in an image.

% Compute the Hough transform of the image and plot
[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
title('Hough transform of the image')

The peak positions are extracted using houghpeaks.

% Compute peaks in the transform, up to 5 peaks
P = houghpeaks(H,5);
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','g'); xlim([-90 -50]); ylim([-5000 0])

 Waveform Parameter Extraction from Received Pulse

1-645

Using these positions, houghlines can reconstruct the lines in the original binary image. Then as
discussed earlier, the beginning and the end of these lines help us estimate the waveform parameters.

lines = houghlines(BW,T,R,P,'FillGap',3e-6*fs,'MinLength',1e-6*fs);
coord = [lines(:).point1; lines(:).point2];

% Plot the detected lines superimposed on the binary image
clf;
imagesc(f*1e-6, t*1e6, BW); colormap(gray); hold on
xlabel('Frequency (MHz)')
ylabel('Time(\mus)')
title('Hough transform - detected lines')
for ii = 1:2:2*size(lines,2)
 plot(f(coord(:,ii))*1e-6, t(coord(:,ii+1))*1e6,'LineWidth',2,'Color','green');
end

1 Featured Examples

1-646

% Calculate the parameters using the line co-ordinates
pulDur = t(coord(2,2)) - t(coord(1,2)); % Pulse duration
bWidth = f(coord(2,1)) - f(coord(1,1)); % Pulse Bandwidth
pulRI = abs(t(coord(1,4)) - t(coord(1,2))); % Pulse repetition interval
detFc = detfBand + f(coord(2,1)); % Center frequency

The extracted waveform characteristics are listed below. They match the truth very well. These
estimates can then be used to catalog the radar and prepare for counter measures if necessary.

helperRWR('displayParameters',pulRI, pulDur, bWidth,detFc, doa,d);

Pulse repetition interval = 14.97 microseconds
Pulse duration = 2.84 microseconds
Pulse bandwidth = 27 MHz
Center frequency = 1.8286 GHz
Azimuth angle of emitter = -18.5 degrees
Elevation angle of emitter = -17.5 degrees
Distance of the emitter = 3325.5095 m

Summary

This demo shows how an RWR can estimate the parameters of the intercepted radar pulse using
signal processing and image processing techniques.

 Waveform Parameter Extraction from Received Pulse

1-647

References

[1] Electronic Warfare and Radar Systems Engineering Handbook 2013, Naval Air Warfare Center
Weapons Division, Point Mugu, California.

[2] Daniel L. Stevens, Stephanie A. Schuckers, Detection and Parameter Extraction of Low Probability
of Intercept Radar Signals using the Hough Transform . Global Journal of Research In Engineering
Vol 15 Issue 6, Jan. 2016

1 Featured Examples

1-648

Clutter

2

Clutter Modeling
In this section...
“Surface Clutter Overview” on page 2-2
“Approaches for Clutter Simulation or Analysis” on page 2-2
“Considerations for Setting Up a Constant Gamma Clutter Simulation” on page 2-2
“Related Examples” on page 2-4

Surface Clutter Overview
Surface clutter refers to reflections of a radar signal from land, sea, or the land-sea interface. When
trying to detect or track targets moving on or above the surface, you must be able to distinguish
between clutter and the targets of interest. For example, a ground moving target indicator (GMTI)
radar application should detect targets on the ground while accounting for radar reflections from
trees or houses.

If you are simulating a radar system, you might want to incorporate surface clutter into the
simulation to ensure the system can overcome the effects of surface clutter. If you are analyzing the
statistical performance of a radar system, you might want to incorporate clutter return distributions
into the analysis.

Approaches for Clutter Simulation or Analysis
Radar Toolbox software offers these tools to help you incorporate surface clutter into your simulation
or analysis:

• constantGammaClutter, a System object™ that simulates clutter returns using the constant
gamma model

• Utility functions to help you implement your own clutter models:

• billingsleyicm
• depressionang
• effearthradius
• grazingang
• horizonrange
• surfclutterrcs
• surfacegamma

Considerations for Setting Up a Constant Gamma Clutter Simulation
When you use constantGammaClutter, you must configure the object for the situation you are
simulating, and confirm that the assumptions the software makes are valid for your system.

Physical Configuration Properties

The constantGammaClutter object has properties that correspond to physical aspects of the
situation you are modeling. These properties include:

2 Clutter

2-2

• Propagation speed, sample rate, and pulse repetition frequency of the signal
• Operating frequency of the system
• Altitude, speed, and direction of the radar platform
• Depression angle of the broadside of the radar antenna array

Clutter-Related Properties

The object has properties that correspond to the clutter characteristics, location, and modeling
fidelity. These properties include:

• Gamma parameter that depends on the terrain type and system’s operating frequency.
• Azimuth coverage and maximum range for the clutter simulation.
• Azimuth span of each clutter patch. The software internally divides the clutter ring into a series of

adjacent, non-overlapping clutter patches.
• Clutter coherence time. This value indicates how frequently the software changes the set of

random numbers in the clutter simulation.

In the simulation, you can use identical random numbers over a time interval or uncorrelated
random numbers. Simulation behavior slightly differs from reality, where a moving platform
produces clutter returns that are correlated with each other over small time intervals.

Working with Samples or Pulses

The constantGammaClutter object has properties that let you obtain results in a convenient
format. Using the OutputFormat property, you can choose to have the step method produce a
signal that represents:

• A fixed number of pulses. You indicate the number of pulses using the NumPulses property of the
object.

• A fixed number of samples. You indicate the number of samples using the NumSamples property of
the object. Typically, you use the number of samples in one pulse. In staggered PRF applications,
you might find this option more convenient because the step output always has the same matrix
size.

Assumptions

The clutter simulation that constantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

 Clutter Modeling

2-3

Related Examples
• “Ground Clutter Mitigation with Moving Target Indication (MTI) Radar” on page 1-503
• “Introduction to Space-Time Adaptive Processing”
• “DPCA Pulse Canceller to Reject Clutter”
• “Adaptive DPCA Pulse Canceller To Reject Clutter and Interference”
• “Sample Matrix Inversion Beamformer”

2 Clutter

2-4

Interference

3

Barrage Jammer

In this section...
“Support for Modeling Barrage Jammer” on page 3-2
“Model Barrage Jammer Output” on page 3-2
“Model Effect of Barrage Jammer on Target Echo” on page 3-3

Support for Modeling Barrage Jammer
The barrageJammer object models a broadband jammer. The output of barrageJammer is a
complex white Gaussian noise sequence. The modifiable properties of the barrage jammer are:

• ERP — Effective radiated power in watts
• SamplesPerFrameSource — Source of number of samples per frame
• SamplesPerFrame — Number of samples per frame
• SeedSource — Source of seed for random number generator
• Seed — Seed for random number generator

The real and imaginary parts of the complex white Gaussian noise sequence each have variance equal
to 1/2 the effective radiated power in watts. Denote the effective radiated power in watts by P. The
barrage jammer output is:

w[n] = P
2x[n] + j P

2 y[n]

In this equation, x[n] and y[n] are uncorrelated sequences of zero-mean Gaussian random variables
with unit variance.

Model Barrage Jammer Output
This example examines the statistical properties of the barrage jammer output and how they relate to
the effective radiated power (ERP). Create a barrage jammer using an effective radiated power of
5000 watts. Generate output at 500 samples per frame. Then call the step function once to generate
a single frame of complex data. Using the histogram function, show the distribution of barrage
jammer output values. The BarrageJammer System object uses a random number generator. In this
example, the random number generator seed is fixed for illustrative purposes and can be removed.

rng default
jammer = barrageJammer('ERP',5000,...
 'SamplesPerFrame',500);
y = jammer();
subplot(2,1,1)
histogram(real(y))
title('Histogram of Real Part')
subplot(2,1,2)
histogram(imag(y))
title('Histogram of Imaginary Part')
xlabel('Watts')

3 Interference

3-2

The mean values of the real and imaginary parts are

mean(real(y))

ans = -1.0961

mean(imag(y))

ans = -2.1671

which are effectively zero. The standard deviations of the real and imaginary parts are

std(real(y))

ans = 50.1950

std(imag(y))

ans = 49.7448

which agree with the predicted value of ERP/2.

Model Effect of Barrage Jammer on Target Echo
This example demonstrates how to simulate the effect of a barrage jammer on a target echo. First,
create the required objects. You need an array, a transmitter, a radiator, a target, a jammer, a

 Barrage Jammer

3-3

collector, and a receiver. Additionally, you need to define two propagation paths: one from the array to
the target and back, and the other path from the jammer to the array.

antenna = phased.ULA(4);
Fs = 1e6;
fc = 1e9;
rng('default')
waveform = phased.RectangularWaveform('PulseWidth',100e-6,...
 'PRF',1e3,'NumPulses',5,'SampleRate',Fs);
transmitter = phased.Transmitter('PeakPower',1e4,'Gain',20,...
 'InUseOutputPort',true);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
jammer = barrageJammer('ERP',1000,...
 'SamplesPerFrame',waveform.NumPulses*waveform.SampleRate/waveform.PRF);
target = phased.RadarTarget('Model','Nonfluctuating',...
 'MeanRCS',1,'OperatingFrequency',fc);
targetchannel = phased.FreeSpace('TwoWayPropagation',true,...
 'SampleRate',Fs,'OperatingFrequency', fc);
jammerchannel = phased.FreeSpace('TwoWayPropagation',false,...
 'SampleRate',Fs,'OperatingFrequency', fc);
collector = phased.Collector('Sensor',antenna,...
 'OperatingFrequency',fc);
amplifier = phased.ReceiverPreamp('EnableInputPort',true);

Assume that the array, target, and jammer are stationary. The array is located at the global origin,
(0,0,0). The target is located at (1000,500,0), and the jammer is located at (2000,2000,100).
Determine the directions from the array to the target and jammer.

targetloc = [1000 ; 500; 0];
jammerloc = [2000; 2000; 100];
[~,tgtang] = rangeangle(targetloc);
[~,jamang] = rangeangle(jammerloc);

Finally, transmit the rectangular pulse waveform to the target, reflect it off the target, and collect the
echo at the array. Simultaneously, the jammer transmits a jamming signal toward the array. The
jamming signal and echo are mixed at the receiver. Generate waveform

wav = waveform();
% Transmit waveform
[wav,txstatus] = transmitter(wav);
% Radiate pulse toward the target
wav = radiator(wav,tgtang);
% Propagate pulse toward the target
wav = targetchannel(wav,[0;0;0],targetloc,[0;0;0],[0;0;0]);
% Reflect it off the target
wav = target(wav);
% Collect the echo
wav = collector(wav,tgtang);

Generate the jamming signal

jamsig = jammer();
% Propagate the jamming signal to the array
jamsig = jammerchannel(jamsig,jammerloc,[0;0;0],[0;0;0],[0;0;0]);
% Collect the jamming signal
jamsig = collector(jamsig,jamang);

% Receive target echo alone and target echo + jamming signal

3 Interference

3-4

pulsewave = amplifier(wav,~txstatus);
pulsewave_jamsig = amplifier(wav + jamsig,~txstatus);

Plot the result, and compare it with received waveform with and without jamming.

subplot(2,1,1)
t = unigrid(0,1/Fs,size(pulsewave,1)*1/Fs,'[)');
plot(t*1000,abs(pulsewave(:,1)))
title('Magnitudes of Pulse Waveform Without Jamming--Element 1')
ylabel('Magnitude')
subplot(2,1,2)
plot(t*1000,abs(pulsewave_jamsig(:,1)))
title('Magnitudes of Pulse Waveform with Jamming--Element 1')
xlabel('millisec')
ylabel('Magnitude')

 Barrage Jammer

3-5

Radar Equation

4

Radar Equation
In this section...
“Radar Equation Theory” on page 4-2
“Plot Vertical Coverage Pattern Using Default Parameters” on page 4-3
“Compute Peak Power Using Radar Equation Calculator App” on page 4-4

Radar Equation Theory
The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. In this equation, the signal model is assumed to be
deterministic. The equation for the power at the input to the receiver is:

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pr — Received power in watts.
• Pt — Peak transmit power in watts.
• Gt — Transmitter gain.
• Gr — Receiver gain.
• λ — Radar operating frequency wavelength in meters.
• σ — Target's nonfluctuating radar cross section in square meters.
• L — General loss factor to account for both system and propagation loss.
• Rt — Range from the transmitter to the target.
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter and

receiver ranges are identical.

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise (SNR) ratio. To model the noise term, assume the thermal noise in the receiver has a white
noise power spectral density (PSD) given by:

P(f) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise figure.

The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature and is denoted by Ts, so that Ts = TFn .

4 Radar Equation

4-2

Using the equation for the received signal power and the output noise power, the receiver output
SNR is:

Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

Solving for the required peak transmit power:

Pt =
Pr(4π)3kTsRt

2Rr
2L

NτGtGrλ2σ

Plot Vertical Coverage Pattern Using Default Parameters
Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range to 200 km. The
antenna pattern, surface roughness, antenna tilt angle, and field polarization assume their default
values as specified in the AntennaPattern, SurfaceRoughness, TiltAngle, and Polarization
properties.

Obtain an array of vertical coverage pattern values and angles.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height);

To see the vertical coverage pattern, omit the output arguments.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
radarvcd(freq,rng_fs,ant_height);

 Radar Equation

4-3

Compute Peak Power Using Radar Equation Calculator App
The radarEquationCalculator App lets you determine key radar characteristics such as detection
range, required peak transmit power, and SNR. The App works for monostatic and bistatic radars.

Open radarEquationCalculator App

When you type radarEquationCalculator from the command line or select the app from the App
Toolstrip, an interactive window opens. The default window shows a calculation of target range from
SNR, power, and other parameters. You can then select various options to compute different radar
parameters.

radarEquationCalculator

4 Radar Equation

4-4

Compute Required Peak Transmit Power of Monostatic Radar

As an example, use the app to compute the required peak transmit power for a monostatic radar to
detect a large target at 100 km. The radar operates at 10 GHz with a 40 dB antenna gain. Set the
probability of detection to 0.9 and the probability of false alarm to 0.0001.

1 From the Calculation Type drop-down list, choose Peak Transmit Power
2 Set the Wavelength to 3 cm
3 Specify the Pulse Width as 2 microseconds
4 Assume total System Losses of 5 dB
5 Assuming the target is a large airplane, set Target Radar Cross Section value to 100 m2
6 Choose Configuration as Monostatic
7 Set the Gain to be 40 dB

 Radar Equation

4-5

8 Open the SNR box
9 Specify the Probability of Detections as 0.9
10 Specify the Probability of False Alarm as 0.0001

Close the app window. Normally, you close the app using the close button.

hg = findall(0,'Name','Radar Equation Calculator');
close(hg)

You can see from this previously prepared screen shot that the required peak transmit power is .2095
W.

im = imread('radarEquationExample_03.png');
figure('Position',[344 206 849 644])
image(im)
axis off
set(gca,'Position',[0.083 0.083 0.834 0.888])

4 Radar Equation

4-6

Model Platform Motion Using Trajectory
Objects

5

Model Platform Motion Using Trajectory Objects
This topic introduces how to use three different trajectory objects to model platform trajectories, and
how to choose between them.

Introduction
Radar Toolbox provides three System objects that you can use to model trajectories of platforms
including ground vehicles, ships, aircraft, and spacecraft. You can choose between these trajectory
objects based on the available trajectory information and the distance span of the trajectory.

• waypointTrajectory — Defines a trajectory using a few waypoints in Cartesian coordinates
that the trajectory must pass through. The trajectory assumes the reference frame is a fixed
North-East-Down (NED) or East-North-Up (ENU) frame. Since the trajectory interpolation
assumes that the gravitational acceleration expressed in the trajectory reference frame is
constant, waypointTrajectory is typically used for a trajectory defined within an area that
spans only tens or hundreds of kilometers.

• geoTrajectory — Defines a trajectory using a few waypoints in geodetic coordinates (latitude,
longitude, and altitude) that the trajectory must pass through. Since the waypoints are expressed
in geodetic coordinates, geoTrajectory is typically used for a trajectory from hundreds to
thousands of kilometers of distance span.

• kinematicTrajectory — Defines a trajectory using kinematic properties, such as acceleration
and angular acceleration, expressed in the platform body frame. You can use
kinematicTrajectory to generate a trajectory of any distance span as long as the kinematic
information of the trajectory is available. The object assumes a Cartesian coordinate reference
frame.

The two waypoint-based trajectory objects (waypointTrajectory and geoTrajectory) can
automatically calculate the linear velocity information of the platform, but you can also explicitly
specify the linear velocity using the Velocity property or a combination of the Course,
GroundSpeed, and ClimbRate properties.

The trajectory of a platform is composed of rotational motion and translational motion. By default, the
two waypoint-based trajectory objects (waypointTrajectory and geoTrajectory) automatically
generate the orientation of the platform at each waypoint by aligning the yaw angle with the path of
the trajectory, but you can explicitly specify the orientation using the Orientation property.
Alternately, you can use the AutoPitch and AutoBank properties to enable automatic pitch and roll
angles, respectively. For kinematicTrajectory, you need to use the Orientation property and
the angular velocity input to specify the rotational motion of the trajectory.

waypointTrajectory
The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints expressed in Cartesian coordinates. Generally, you can use waypointTrajectory to
model vehicles travelling within hundreds of kilometers. These vehicles include automobiles, surface
marine craft, and commercial aircraft (helicopters, planes, and quadcopters). You can choose the
reference frame as a fixed ENU or NED frame using the ReferenceFrame property. For more details
on how the object generates the trajectory, see the “Algorithms” (Sensor Fusion and Tracking
Toolbox) section of waypointTrajectory.

5 Model Platform Motion Using Trajectory Objects

5-2

waypointTrajectory Example for Aircraft Landing

Define the trajectory of a landing aircraft using a waypointTrajectory object.

waypoints = [-421 -384 2000;
 47 -294 1600;
 1368 174 1300;
 995 1037 900;
 -285 293 600;
 -1274 84 350;
 -2328 101 150;
 -3209 83 0];
timeOfArrival = [0; 16.71; 76.00; 121.8; 204.3; 280.31; 404.33; 624.6];
aircraftTraj = waypointTrajectory(waypoints,timeOfArrival);

Create a theaterPlot object to visualize the trajectory and the aircraft.

minCoords = min(waypoints);
maxCoords = max(waypoints);
tp = theaterPlot('XLimits',1.2*[minCoords(1) maxCoords(1)], ...
 'YLimits',1.2*[minCoords(2) maxCoords(2)], ...
 'ZLimits',1.2*[minCoords(3) maxCoords(3)]);

% Create a trajectory plotter and a platform plotter
tPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
pPlotter = platformPlotter(tp,'DisplayName','Aircraft');

Obtain the Cartesian waypoints of the trajectory using the lookupPose object function.

sampleTimes = timeOfArrival(1):timeOfArrival(end);
numSteps = length(sampleTimes);
[positions,orientations] = lookupPose(aircraftTraj,sampleTimes);
plotTrajectory(tPlotter,{positions})
axis equal

Plot the platform motion using an airplane mesh object.

mesh = scale(rotate(tracking.scenario.airplaneMesh,[0 0 180]),15); % Exaggerated scale for better visualization
view(20.545,-20.6978)
for i = 1:numSteps
 plotPlatform(pPlotter,positions(i,:),mesh,orientations(i))
 % Uncomment the next line to slow the aircraft motion animation
 % pause(1e-7)
end

In the animation, the yaw angle of the aircraft aligns with the trajectory by default.

Create a second aircraft trajectory with the same waypoints as the first aircraft trajectory, but set its
AutoPitch and AutoBank properties to true. This generates a trajectory more representative of
the possible aircraft maneuvers.

aircraftTraj2 = waypointTrajectory(waypoints,timeOfArrival, ...
 'AutoPitch',true, ...
 'AutoBank',true);

Plot the second trajectory and observe the change in aircraft orientation.

[positions2,orientations2] = lookupPose(aircraftTraj2,sampleTimes);
for i = 1:numSteps

 Model Platform Motion Using Trajectory Objects

5-3

 plotPlatform(pPlotter,positions2(i,:),mesh,orientations2(i));
 % Uncomment the next line to slow the aircraft motion animation
 % pause(1e-7)
end

Visualize the orientation differences between the two trajectories in angles.

distance = dist(orientations2,orientations);
figure
plot(sampleTimes,distance*180/pi)
xlabel('Time (sec)')
ylabel('Angular Ditance (dge)')
title('Orientation Difference Between Two Waypoint Trajectories')

5 Model Platform Motion Using Trajectory Objects

5-4

geoTrajectory
The geoTrajectory System object generates a trajectory using waypoints in a similar fashion as the
waypointTrajectory object, but it has two major differences in how to specify waypoints and
velocity inputs.

• When specifying waypoints for geoTrajectory, express each waypoint in the geodetic
coordinates of latitude, longitude, and altitude above the WG84 ellipsoid model. Using geodetic
coordinates, you can conveniently specify long-range trajectories, such as airplane flight trajectory
on a realistic Earth model.

• When specifying the orientation and velocity information for each waypoint, the reference frame
for orientation and velocity is the local NED or ENU frame defined under the current trajectory
waypoint. For example, the N1-E1-D1 frame shown in the figure is a local NED reference frame.

 Model Platform Motion Using Trajectory Objects

5-5

In the figure,

• Ex, Ey, and Ez are the three axes of the Earth-centered Earth-fixed (ECEF) frame, which is fixed on
the Earth.

• (λ1, ϕ1, h1) and (λ2, ϕ2, h2) are the geodetic coordinates of the plane at the two waypoints.
• (N1, E1, D1) and (N2, E2, D2) are the two local NED frames corresponding to the two trajectory

waypoints.
• Bx, By, and Bz are the three axes of the platform body frame, which is fixed on the platform.

geoTrajectory Example For Flight Trajectory

Load the flight data of a flight trajectory from Los Angeles to Boston. The data contains flight
information including flight time, geodetic coordinates for each waypoint, course, and ground speed.

load flightData.mat

Create a geoTrajectory object based on the flight data.

planeTraj = geoTrajectory([latitudes longitudes heights],timeOfArrival, ...
 'Course',courses,'GroundSpeed',speeds);

5 Model Platform Motion Using Trajectory Objects

5-6

Look up the Cartesian coordinates of the waypoints in the ECEF frame.

sampleTimes = 0:1000:3600*10;
positionsCart = lookupPose(planeTraj,sampleTimes,'ECEF');

Show the trajectory using the helperGlobeView class, which approximates the Earth sphere.

viewer = helperGlobeView;
plot3(positionsCart(:,1),positionsCart(:,2),positionsCart(:,3),'r')

You can further explore the trajectory by querying other outputs of the trajectory.

kinematicTrajectory
Unlike the two waypoint trajectory objects, the kinematicTrajectory System object uses
kinematic attributes to specify a trajectory. Think of the trajectory as a numerical integration of the
pose (position and orientation) and linear velocity of the platform, based on the linear acceleration
and angular acceleration information. The pose and linear velocity are specified with respected to a
chosen, fixed scenario frame, whereas the linear acceleration and angular velocity are specified with
respected to the platform body frame.

kinematicTrajectory Example For UAV Path

Create a kinematicTrajectory object for simulating a UAV path. Specify the time span of the
trajectory as 120 seconds.

 Model Platform Motion Using Trajectory Objects

5-7

traj = kinematicTrajectory('SampleRate',1, ...
 'AngularVelocitySource','Property');

tStart = 0;
tFinal = 120;
tspan = tStart:tFinal;

numSteps = length(tspan);
positions = NaN(3,numSteps);
velocities = NaN(3,numSteps);
vel = NaN(1,numSteps);

To form a square path covering a small region, separate the UAV trajectory into six segments:

• Taking off and ascending in the z-direction
• Moving in the positive x-direction
• Moving in the positive y-direction
• Moving in the negative x-direction
• Moving in the negative y-direction
• Descending in the z-direction and landing

In each segment, the UAV accelerates in one direction and then decelerates in that direction with the
same acceleration magnitude. As a result, at the end of each segment, the velocity of the UAV is zero.

segSteps = floor(numSteps/12);
accelerations = zeros(3,numSteps);
acc = 1;
% Acceleration for taking off and ascending in the z-direction
accelerations(3,1:segSteps) = acc;
accelerations(3,segSteps+1:2*segSteps) = -acc;

% Acceleration for moving in the positive x-direction
accelerations(1,2*segSteps+1:3*segSteps) = acc;
accelerations(1,3*segSteps+1:4*segSteps) = -acc;

% Acceleration for moving in the positive y-direction
accelerations(2,4*segSteps+1:5*segSteps) = acc;
accelerations(2,5*segSteps+1:6*segSteps) = -acc;

% Acceleration for moving in the negative x-direction
accelerations(1,6*segSteps+1:7*segSteps) = -acc;
accelerations(1,7*segSteps+1:8*segSteps) = acc;

% Acceleration for moving in the negative y-direction
accelerations(2,8*segSteps+1:9*segSteps) = -acc;
accelerations(2,9*segSteps+1:10*segSteps) = acc;

% Descending in the z-direction and landing
accelerations(3,10*segSteps+1:11*segSteps) =-acc;
accelerations(3,11*segSteps+1:end) = acc;

Simulate the trajectory by calling the kinematicTrajectory object with the specified acceleration.

for i = 1:numSteps
 [positions(:,i),~,velocities(:,i)] = traj(accelerations(:,i)');

5 Model Platform Motion Using Trajectory Objects

5-8

 vel(i) = norm(velocities(:,i));
end

Visualize the trajectory using theaterPlot.

% Create a theaterPlot object and create plotters for the trajectory and the
% UAV Platform.
figure
tp = theaterPlot('XLimits',[-30 130],'YLimits',[-30 130],'ZLimits',[-30 130]);
tPlotter = trajectoryPlotter(tp,'DisplayName','UAV trajectory');
pPlotter = platformPlotter(tp,'DisplayName','UAV','MarkerFaceColor','g');

% Plot the trajectory.
plotTrajectory(tPlotter,{positions'})
view(-43.18,56.49)

% Use a cube to represent the UAV platform.
dims = struct('Length',10, ...
 'Width',5, ...
 'Height',3, ...
 'OriginOffset',[0 0 0]);

% Animate the UAV platform position.
for i = 1:numSteps
 plotPlatform(pPlotter,positions(:,i)',dims,eye(3))
 pause(0.01)
end

 Model Platform Motion Using Trajectory Objects

5-9

Show the velocity magnitude of the UAV platform.

figure
plot(tspan,vel)
xlabel('Time (s)')
ylabel('Velocity (m/s)')
title('Magnitude of the UAV Velocity')

kinematicTrajectory Example For Spacecraft Trajectory

Use kinematicTrajetory to specify a circular spacecraft trajectory. The orbit has these elements:

• Orbital radius (r) — 7000 km
• Inclination (i) — 60 degrees
• Argument of ascending node (Ω) — 90 degrees. The ascending node direction is aligned with the

Y-direction.
• True anomaly (ν) — –90 degrees

In the figure, X-Y-Z is the Earth-centered inertial (ECI) frame, which has a fixed position and
orientation in space. x-y-z is the spacecraft body frame, fixed on the spacecraft. r and v are the
initial position and velocity of the spacecraft.

5 Model Platform Motion Using Trajectory Objects

5-10

To specify the circular orbit using kinematicTrajectory, you need to provide the initial position,
initial velocity, and initial orientation of the spacecraft with respect to the ECI frame. For the chosen
true anomaly (v = –90∘), the spacecraft velocity is aligned with the Y-direction.

inclination = 60; % degrees
mu = 3.986e14; % standard earth gravitational parameter
radius = 7000e3;% meters
v = sqrt(mu/radius); % speed
initialPosition = [radius*cosd(inclination),0,-radius*sind(inclination)]';
initialVelocity = [0 v 0]';

Assume the x-direction of the spacecraft body frame is the radial direction, the z-direction is the
normal direction of the orbital plane, and the y-direction completes the right-hand rule. Use the
assumptions to specify the orientation of the body frame at the initial position.

orientation = quaternion([0 inclination 0],'eulerd','zyx','frame');

Express the angular velocity and the angular acceleration of the trajectory in the platform body
frame.

omega = v/radius;
angularVelocity = [0 0 omega]';

 Model Platform Motion Using Trajectory Objects

5-11

a = v^2/radius;
acceleration = [-a 0 0]';

Set a simulation time of one orbital period. Specify a simulation step as 2 seconds.

tFinal = 2*pi/omega;
dt = 2;
sampleRate = 1/dt;
tspan = 0:dt:tFinal;
numSteps = length(tspan);

Create the spacecraft trajectory. Since the acceleration and angular velocity of the spacecraft remain
constant with respect to the spacecraft body frame, specify them as constants. Generate position and
orientation outputs along the trajectory by using the kinematicTrajectory object.

traj = kinematicTrajectory('SampleRate',sampleRate, ...
 'Position',initialPosition, ...
 'Velocity',initialVelocity, ...
 'Orientation',orientation, ...
 'AngularVelocity',angularVelocity, ...
 'Acceleration',acceleration, ...
 'AccelerationSource','Property', ...
 'AngularVelocitySource','Property');

% Generate position and orientation outputs.
positions = NaN(3,numSteps);
orientations = zeros(numSteps,1,'quaternion');
for i = 1:numSteps
 [positions(:,i),orientations(i)] = traj();
end

Use the helperGlobeView class and theaterPlot to show the trajectory.

viewer = helperGlobeView(0,[60 0]);
tp = theaterPlot('Parent',gca,...
 'XLimits',1.2*[-radius radius],...
 'YLimits',1.2*[-radius radius],...
 'ZLimits',1.2*[-radius radius]);
tPlotter = trajectoryPlotter(tp,'LineWidth',2);
pPlotter = platformPlotter(tp,'MarkerFaceColor','m');
legend(gca,'off')

plotTrajectory(tPlotter,{positions'})
% Use a cube with exaggerated dimensions to represent the spacecraft.
dims = struct('Length',8e5,'Width',4e5,'Height',2e5,'OriginOffset',[0 0 0]);

for i = 1:numSteps
 plotPlatform(pPlotter,positions(:,i)',dims,orientations(i))
 % Since the reference frame is the ECI frame, earth rotates with respect to it.
 rotate(viewer,dt)
end

5 Model Platform Motion Using Trajectory Objects

5-12

Summary
In this topic, you learned how to use three trajectory objects to customize your own trajectories based
on the available information. In addition, you learned the fundamental differences in applying them.
This table highlights the main attributes of these trajectory objects.

 Model Platform Motion Using Trajectory Objects

5-13

Trajectory
Object

Position
Inputs

Linear
Velocity
Inputs

Orientation Acceleration
and Angular
Velocity
Inputs

Recommended
Distance Span

waypointTraj
ectory

Cartesian
waypoints
expressed in a
fixed frame
(NED or ENU)

One of these
options:

• Automaticall
y generate
velocity for a
smooth
trajectory,
by default

• Specify
velocity in
the fixed
frame at
each
waypoint

• Specify
course,
ground
speed, and
climb rate in
the fixed
frame at
each
waypoint

One of these
options:

• Auto yaw by
default, auto
pitch by
selection,
and auto
bank by
selection

• Specify
orientation
in the fixed
frame

Cannot specify From within
tens to
hundreds of
kilometers

5 Model Platform Motion Using Trajectory Objects

5-14

Trajectory
Object

Position
Inputs

Linear
Velocity
Inputs

Orientation Acceleration
and Angular
Velocity
Inputs

Recommended
Distance Span

geoTrajector
y

Geodetic
waypoints in
the ECEF frame

One of the
these options:

• Automaticall
y generate
velocity for a
smooth
trajectory,
by default

• Specify
velocity in
the local
frame (NED
or ENU) for
each
waypoint

• Specify
course,
ground
speed, and
climb rate in
the local
frame (NED
or ENU) for
each
waypoint

One of these
options:

• Auto yaw by
default, auto
pitch by
selection,
and auto
bank by
selection

• Specify
orientation
in the local
frame

Cannot specify From hundreds
to thousands of
kilometers

kinematicTra
jectory

Initial position
expressed in a
chosen, fixed
frame

Only initial
velocity in the
fixed frame

Only initial
orientation in
the fixed frame

Specify
acceleration
and angular
velocity in the
platform body
frame

Unlimited
distance span

 Model Platform Motion Using Trajectory Objects

5-15

Kalman Filters

• “Linear Kalman Filters” on page 6-2
• “Extended Kalman Filters” on page 6-7

6

Linear Kalman Filters
In this section...
“State Equations” on page 6-2
“Measurement Models” on page 6-3
“Linear Kalman Filter Equations” on page 6-4
“Filter Loop” on page 6-4
“Constant Velocity Model” on page 6-5
“Constant Acceleration Model” on page 6-6

When you use a Kalman filter to track objects, you use a sequence of detections or measurements to
construct a model of the object motion. Object motion is defined by the evolution of the state of the
object. The Kalman filter is an optimal, recursive algorithm for estimating the track of an object. The
filter is recursive because it updates the current state using the previous state, using measurements
that may have been made in the interval. A Kalman filter incorporates these new measurements to
keep the state estimate as accurate as possible. The filter is optimal because it minimizes the mean-
square error of the state. You can use the filter to predict future states or estimate the current state
or past state.

State Equations
For most types of objects tracked in the toolbox, the state vector consists of one-, two- or three-
dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant acceleration and
convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this type of motion.
Sometimes the model includes process noise to reflect uncertainty in the motion model. In this case,
Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk is the unknown noise perturbations of the acceleration. Only the statistics of the noise are known.
It is assumed to be zero-mean Gaussian white noise.

6 Kalman Filters

6-2

You can extend this type of equation to more than one dimension. In two dimensions, the equation has
the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent x- and y-
motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the length of the
time interval. In discrete form, for a sample interval of T, the state-representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier discrete time, k. If
you include noise, the equation becomes more complicated, because the integration of noise is not
straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into account
any known forces acting on the object. Both of these matrices are given. The last term represents
noise-like random perturbations of the dynamic model. The noise is assumed to be zero-mean
Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential equations.
Discrete-time systems with input noise are described by linear stochastic differential equations. A
state-space representation is a mathematical model of a physical system where the inputs, outputs,
and state variables are related by first-order coupled equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the state vector
but are not always the same as the state vector. For instance, in a radar system, the measurements
can be spherical coordinates such as range, azimuth, and elevation, while the state vector is the
Cartesian position and velocity. For the linear Kalman filter, the measurements are always linear
functions of the state vector, ruling out spherical coordinates. To use spherical coordinates, use the
extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to the current
state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also zero-mean
white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].

 Linear Kalman Filters

6-3

Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each instance, the
process and measurement noises are not known. Only the noise statistics are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and also how the
uncertainties in the state components evolve.

Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter performs these
steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at the k+1 step
propagated from step k. This estimate is often called the a priori estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k
2 Use the difference between the actual measurement and predicted measurement to correct the

state at the updated time. The correction requires computing the Kalman gain. To do this, first
compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a linear

combination of the predicted state and the measurement. The estimate after correction uses the
subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori estimate of the
state because it is derived after the measurement is included.

Correct the state covariance matrix

6 Kalman Filters

6-4

Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a correction
to the measurement but is a best estimate of what the measurement would be based upon the
best estimate of the state. Comparing this to the actual measurement gives you an indication of
the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model. Alternatively, you
can specify the transition matrix for linear motion. The state update at the next time step is a linear
function of the state at the present time. In this filter, the measurements are also linear functions of
the state described by a measurement matrix. For an object moving in 3-D space, the state is
described by position and velocity in the x-, y-, and z-coordinates. The state transition model for the
constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

 Linear Kalman Filters

6-5

The measurement model is a linear function of the state vector. The simplest case is one where the
measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model. Alternatively,
you can specify the transition matrix for constant-acceleration linear motion. The transition model for
linear acceleration is

xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

See Also
Objects
trackingKF

6 Kalman Filters

6-6

Extended Kalman Filters
In this section...
“State Update Model” on page 6-7
“Measurement Model” on page 6-7
“Extended Kalman Filter Loop” on page 6-8
“Predefined Extended Kalman Filter Functions” on page 6-9

Use an extended Kalman filter when object motion follows a nonlinear state equation or when the
measurements are nonlinear functions of the state. A simple example is when the state or
measurements of the object are calculated in spherical coordinates, such as azimuth, elevation, and
range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state and
covariance matrix remain linear functions of the previous state and covariance matrix. However, the
state transition matrix in the linear Kalman filter is replaced by the Jacobian of the state equations.
The Jacobian matrix is not constant but can depend on the state itself and time. To use the extended
Kalman filter, you must specify both a state transition function and the Jacobian of the state transition
function.

Assume there is a closed-form expression for the predicted state as a function of the previous state,
controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update equation:

xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state and the
measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is

 Extended Kalman Filters

6-7

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This extended Kalman filter loop is almost identical to the linear Kalman filter loop except that:

• The exact nonlinear state update and measurement functions are used whenever possible and the
state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.

6 Kalman Filters

6-8

Predefined Extended Kalman Filter Functions
The toolbox provides predefined state update and measurement functions to use in the extended
Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state update

model
constveljac Constant-velocity state update

Jacobian
cvmeas Constant-velocity measurement

model
cvmeasjac Constant-velocity measurement

Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state update

model
constturnjac Constant turn-rate state update

Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate measurement

Jacobian

See Also
Objects
trackingEKF

 Extended Kalman Filters

6-9

	Featured Examples
	Radar Architecture: Part 1 – System components and requirements allocation
	Radar Architecture: Part 2 – Test automation and requirements traceability
	Benchmark Trajectories for Multi-Object Tracking
	Simulate Radar Ghosts due to Multipath Return
	Highway Vehicle Tracking with Multipath Radar Reflections
	Track-to-Track Fusion for Automotive Safety Applications
	Track-to-Track Fusion for Automotive Safety Applications in Simulink
	Automotive Adaptive Cruise Control Using FMCW and MFSK Technology
	Increasing Angular Resolution with Virtual Arrays
	Patch Antenna Array for FMCW Radar
	Simultaneous Range and Speed Estimation Using MFSK Waveform
	Automotive Adaptive Cruise Control Using FMCW Technology
	Radar Signal Simulation and Processing for Automated Driving
	Adaptive Tracking of Maneuvering Targets with Managed Radar
	Search and Track Scheduling for Multifunction Phased Array Radar
	PRF Agility Based on Target Detection
	Interference Mitigation Using Frequency Agility Techniques
	Frequency Agility in Radar, Communications, and EW Systems
	Waveform Scheduling Based on Target Detection
	Labeling Radar Signals with Signal Labeler
	Pedestrian and Bicyclist Classification Using Deep Learning
	Radar Target Classification Using Machine Learning and Deep Learning
	Radar and Communications Waveform Classification Using Deep Learning
	Spaceborne Synthetic Aperture Radar Performance Prediction
	Airborne SAR System Design
	Stripmap Synthetic Aperture Radar (SAR) Image Formation
	Squinted Spotlight Synthetic Aperture Radar (SAR) Image Formation
	Synthetic Aperture Radar System Simulation and Image formation
	Processing Radar Reflections Acquired with the Demorad Radar Sensor Platform
	Detector Performance Analysis Using ROC Curves
	Monte-Carlo ROC Simulation
	Receiver Operating Characteristic to Tracker Operating Characteristic
	Modeling Radar Detectability Factors
	MTI Improvement Factor for a Land-Based Radar System
	Radar Link Budget Analysis
	Planning Radar Network Coverage over Terrain
	Sea Clutter Simulation for a Maritime Radar System
	Radar Scenario Tutorial
	Use theaterPlot to Visualize Radar Scenario
	Simulating a Scanning Radar
	Simulating Passive Radar Sensors and Radar Interferences
	Introduction to Micro-Doppler Effects
	Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
	Simulating a Polarimetric Radar Return for Weather Observation
	Clutter and Jammer Mitigation with STAP
	Introduction to Space-Time Adaptive Processing
	Acceleration of Clutter Simulation Using GPU and Code Generation
	Modeling Target Radar Cross Section
	Simulating a Bistatic Polarimetric Radar
	Simulating a Bistatic Radar with Two Targets
	Modeling a Wideband Monostatic Radar in a Multipath Environment
	Introduction to Modeling the Propagation of Radar Signals
	Display Micro-Doppler Shift of Moving Bicyclist
	Radar Performance Analysis Over Terrain
	Transitioning From Statistical to Physics Based Radar Models
	Doppler Estimation
	Constant False Alarm Rate (CFAR) Detection
	Waveform Parameter Extraction from Received Pulse

	Clutter
	Clutter Modeling
	Surface Clutter Overview
	Approaches for Clutter Simulation or Analysis
	Considerations for Setting Up a Constant Gamma Clutter Simulation
	Related Examples

	Interference
	Barrage Jammer
	Support for Modeling Barrage Jammer
	Model Barrage Jammer Output
	Model Effect of Barrage Jammer on Target Echo

	Radar Equation
	Radar Equation
	Radar Equation Theory
	Plot Vertical Coverage Pattern Using Default Parameters
	Compute Peak Power Using Radar Equation Calculator App

	Model Platform Motion Using Trajectory Objects
	Model Platform Motion Using Trajectory Objects
	Introduction
	waypointTrajectory
	geoTrajectory
	kinematicTrajectory
	Summary

	Kalman Filters
	Linear Kalman Filters
	State Equations
	Measurement Models
	Linear Kalman Filter Equations
	Filter Loop
	Constant Velocity Model
	Constant Acceleration Model

	Extended Kalman Filters
	State Update Model
	Measurement Model
	Extended Kalman Filter Loop
	Predefined Extended Kalman Filter Functions

